High order positivity-preserving entropy
stable discontinuous Galerkin discretizations

Jesse Chan

Dept. of Computational Applied Mathematics and Operations Research
Rice University

FEM@LLNL: MFEM Seminar, Lawrence Livermore National Laboratories



Former PhD student: Dr. Yimin Lin

Yimin has been the driving force behind the work in this talk.



High order finite element methods for hyperbolic PDEs

e Fluid dynamics applications:
acoustics, vorticular flows,

turbulence, shocks.
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High order finite element methods for hyperbolic PDEs

e Fluid dynamics applications:
acoustics, vorticular flows,
turbulence, shocks.

e Goal: high accuracy on

unstructured meshes.

e Discontinuous Galerkin (DG)
methods: geometric
flexibility 4+ high order.



Why discontinuous Galerkin methods?

0 20 10 60 80 100 0 50 100 150
nz = 2201 nz = 2475

(a) High order FEM (b) High order DG

High order DG mass matrices: easily invertible for explicit time-stepping.



Why high order accuracy?
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Accurate resolution of propagating vortices and waves.



Why high order accuracy?

2nd, 4th, and 16th order Taylor-Green vortex. Vorticular structures and
acoustic waves are both sensitive to numerical dissipation.

Results from Beck and Gassner (2013).



Why not high order DG methods?
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(a) Exact solution (b) 8th order DG

High order methods blow up for under-resolved solutions
of nonlinear conservation laws (e.g., shocks and turbulence).




Why not high order DG methods?

Time = 0.499675 Time = 0.499675
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(a) Exact solution (b) 8th order DG

High order methods blow up for under-resolved solutions
of nonlinear conservation laws (e.g., shocks and turbulence).




Why not high order DG methods?
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(a) Exact solution (b) 8th order DG

High order methods blow up for under-resolved solutions
of nonlinear conservation laws (e.g., shocks and turbulence).




Why not high order DG methods?

Time = 1.067650 Time = 1.067650
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(a) Exact solution (b) 8th order DG

High order methods blow up for under-resolved solutions
of nonlinear conservation laws (e.g., shocks and turbulence).




Why entropy stability for high order schemes?

e High order DG needs

JanSs. Hesth - ilizati
JanS. Hethaven heurllst|c stablllzatlc.m (e.g.,
artificial viscosity, filtering).
Nodal Discontinuous
Galerkin Methods e Entropy stable schemes
Algorithms, Analysis, and improve robustness without

Applications

‘ 132 5 Nonlinear problems no added dISSIp ation.

Filter as little as possible e Turns DG into a “good”
.. but as much as is needed.

high order method.

4] Springer

Finite volume methods: Tadmor, Chandrashekar, Ray, Svard, Fjordholm, Mishra, LeFloch, Rohde, ...
High order DGSEM: Fisher, Carpenter, Gassner, Winters, Kopriva, Persson, Pazner, ...
High order simplices: Chen and Shu, Crean, Hicken, Del Rey Fernandez, Zingg, ...



Examples of high order entropy stable DG simulations

(a) Density, p.

(b) Temperature, 7.

All simulations are run without artificial viscosity, filtering, or slope limiting.

Parsani et al. (2021). High-order accurate entropy-stable discontinuous collocated Galerkin . ..



Talk outline

1. Entropy stable nodal DG methods
2. Entropy stable nodal DG with positivity-preserving limiting

3. From subcell limiting to a cell entropy inequality



Entropy stable nodal DG methods



Entropy stability for nonlinear problems

e Energy balance for nonlinear conservation laws (Burgers’,
shallow water, compressible Euler + Navier-Stokes).

=0.

ot ox

ou n of (u)

e Continuous entropy inequality: convex entropy function S(u),
entropy potential ¥)(u), entropy variables v(u)

ou  Of(u)\ _ 08
/QvT<8t+ o )—0, U(u)—%

0S(u) .
=5 T () s <0




Entropy conservative finite volume methods

e Finite volume scheme:

du; n Fuip1,u;) — fug,u1q)
dt h

=0.

e Take f = fpc to be an entropy conservative numerical flux

fec(u,u) = f(u), (consistency)
fEC(u7U) = fEC(vvu)7 (Symmetry)
(v —vr)" fec (UL, ur) = ¥ — ¥r, (conservation).

e Can show numerical scheme conserves entropy

0S(u) _~—, dS(u)
o Ot Nzh a

Tadmor (1987). The numerical viscosity of entropy stable schemes for systems of conservation laws.



Example of EC fluxes (compressible Euler equations)

e Define average {{u}} = 3(uz + ug). In one dimension:

fi(ur,ur) = {p}}'*® {u}}
fé(ur, ur) = {ul} f3 + Pave
fg(uL, uR) = (Eavg + Pavg) {{ul},

_ o IR0 L
PR T Ay -y 2

e Non-standard logarithmic mean, “inverse temperature” (3

log _ YL 7UR _r
Hulh loguy, — logug’ b 2p

Chandreshekar (2013), Kinetic energy preserving and entropy stable finite volume schemes for the
compressible Euler and Navier-Stokes equations.



Matrix reformulation using Hadamard products

Hadamard product of two matrices A o B

A11 Aln Bll Bln A11311 AlnBln
. . & : _ . . .

A ... A, B.i ... Bun A,Bni ... ABn,



Matrix reformulation using Hadamard products

Hadamard product of two matrices A o B

A11 Aln Bll Bln A11311 AlnBln
. . & : _ . . .

A ... A, B.i ... Bun A,Bni ... ABn,

Rewrite an N-point (periodic) finite volume scheme as

uy Ffec(ui,u2) — frc(uy,ur)

d |u2 1 fec(uz2,u3) — frc(ui,uz)
S | —0.

U'N fec(un,uy) —.fEC(UN—laUN)



Matrix reformulation using Hadamard products

Hadamard product of two matrices A o B
A11 ce Aln Bll R Bln A11311 Ce. AlnBln

e} . . g

A ... A, B.i ... Bun A,Bni ... ABn,

Rewrite an N-point (periodic) finite volume scheme as

ug Fio—Fin
d |us Fos —Fa2;

h—| |+

i =0, Fi; = fec(u;,uj).

uy Fyi1—FynNn_1



Matrix reformulation using Hadamard products

Hadamard product of two matrices A o B

A ... A, Bi: ... By, A;1Bi1 ... A,Bi,
: S - T : :
A, ... Ayl B ... B A.B, ... ALBu,
Rewrite an N-point (periodic) finite volume scheme as
Fio—Fin 0 1 =1l
F2’3 = F271 —1 0

Fvi—FynN_1 1 -1 0



Matrix reformulation using Hadamard products

Hadamard product of two matrices A o B

A11 Aln Bll Bln A11311 AlnBln
. . & : _ . . .

A ... A, B.i ... Bun A,Bni ... ABn,

Rewrite an N-point (periodic) finite volume scheme as

Fio—Fin 0 1 -1 . F
F2’3 — F271 -1 0 1 1,1 LN
. — (@] . 1
: ool F F
Fni—Fyn-1 1 -1 0 Mo TN

— - flux matrix F
periodic central difference



Matrix reformulation using Hadamard products

Hadamard product of two matrices A o B

A11 Aln Bll Bln A11311 AlnBln
. . & : _ . . .

A ... A, B.i ... Bun A,Bni ... ABn,

Rewrite an N-point (periodic) finite volume scheme as

Fio—Fin

Fas—F
2T 9ol

Fyi1—FnnNn_1



Interpretation using finite difference matrices

Let M = hl. Can reformulate entropy conservative finite volume as

0 1 —1
du

Note: M~'Q is a 2nd order (periodic) differentiation matrix.



Interpretation using finite difference matrices

Let M = hl. Can reformulate entropy conservative finite volume as

0 1 —1
du

Note: M~'Q is a 2nd order (periodic) differentiation matrix.

Key result: generalizable beyond finite volumes

Entropy conservation for any Q = —Q’ and Q1 =0 !
~—— ~—

skew-symmetry conservative



A brief intro to nodal discontinuous Galerkin methods

\ /S

e Multiply by nodal (Lagrange) basis ¢;(x) and integrate

LG+ e [t = faonti—o

e The numerical flux f*(u*,u™) ~ f(u) enforces boundary

conditions and weak continuity across interfaces.

e Nodal (collocation) DG methods: use Gauss-Lobatto

quadrature nodes for both interpolation and integration.



Matrix formulation of nodal DG methods

e Map integrals to the reference interval D = [—1,1]

f (8542 s

o Use u(z,t) = >, u;(t)¢;(x) and fl 8f(“ )0, ~ Qf (u)

ox

MY 4 Qf(u) + ETB( £ (uFu) () =0.
—_————
interface flux

where M = %diag(wl, ...,wn+1), and Q, B, E are
differentiation and boundary matrices

L oe; -1 0 1 0 ... 0
= B_[o J’ E_[o .0 1]'



A “flux differencing” formulation

o |dea: reformulate the DG flux derivative term

Lof(u),
/_1 L~ Qf(u).

e Note that Q1 =0, so Zj Qi; = 0. Thus,

ZQ” Fluj) + f(u)) —QZQ”W

central flux

e We replace the central flux with an entropy conservative flux

QZQijfEC(Uiauj) =(2(QoF)1),, Fi= fuc(uiuj).
J



Extension to multiple elements

e An entropy stable nodal DG formulation can be written as:

M% +Qf(u) +ETB(f* (ut,u™) —f(u7)) =0.

interface flux

Fisher and Carpenter (2014), Gassner, Winters, and Kopriva (2016), Chen and Shu (2017), etc.



Extension to multiple elements

e An entropy stable nodal DG formulation can be written as:

M?Tl: +2(QoF)1+E"B(f* (u*,u7) —f(u7)) =0.

interface flux

Fisher and Carpenter (2014), Gassner, Winters, and Kopriva (2016), Chen and Shu (2017), etc.



Extension to multiple elements

e An entropy stable nodal DG formulation can be written as:

M(jTl: +2(QoF)1+E"B(f* (u*,u7) —f(u7)) =0.

interface flux

o If Q satisfies the summation-by-parts (SBP) property
Q+Q" =E"BE

and if f* (u™,u) is entropy stable (e.g., local Lax-Friedrichs
flux), a cell entropy inequality holds:

8S(u) 'UT *(wt uo) — w7
/Dk ot +/8Dk( it u”) =y (u)n <O0.

Fisher and Carpenter (2014), Gassner, Winters, and Kopriva (2016), Chen and Shu (2017), etc.



Some of our recent work on entropy stable methods

e More general entropy stable “modal” DG formulations.
e Network domains, reduced order modeling
e Non-conforming meshes (Mario Bencomo, DCDR Fernandez)

e Positivity preserving entropy stable schemes for compressible
Navier-Stokes (Yimin Lin, T. Warburton, |. Tomas)

e Efficient implementations (with the developers of Trixi.jl)

Chan (2018). On discretely entropy conservative and entropy stable discontinuous Galerkin methods.

Wu, Chan (2020). Entropy stable discontinuous Galerkin methods for nonlinear conservation laws on
networks and multi-dimensional domains.

Chan (2020). Entropy stable reduced order modeling of nonlinear conservation laws.

Chan, Bencomo, Del Rey Fernandez (2021). Mortar-based entropy-stable discontinuous Galerkin
methods on non-conforming quadrilateral and hexahedral meshes.

Chan, Lin, Warburton (2021). Entropy stable modal discontinuous Galerkin schemes and wall
boundary conditions for the compressible Navier-Stokes equation.

Ranocha et al. (2021). Efficient implementation of modern ES and KEP DG methods. . ..

Lin, Chan, Tomas (2023). A positivity preserving strategy for entropy stable discontinuous Galerkin
discretizations of the compressible Euler and Navier-Stokes equations.



Entropy stable nodal DG with
positivity-preserving limiting




Entropy stable schemes require positivity

Entropy stable schemes require positivity of density, pressure
(numerical fluxes depend on logarithm of density, temperature).

Interpretation of Lobotto nodes as a sub-cell finite volume grid.

e Hard to enforce both high order accuracy and positivity.

e Strategy: blend high order method with a first order positive
method to retain conservation and subcell resolution.

Rueda-Ramirez, Hennemann, Hindenlang, Winters, Gassner (2021). An entropy stable nodal DG
method for the resistive MHD equations. Part Il: Subcell finite volume shock capturing.



The low order method: a global matrix formulation

Start with a naive global matrix formulation using forward Euler
(can extend to higher order in time using SSP-RK).

An example nodal DG discretization.

uk+1 — U;
m;——— + Z Qi; f(uj) = 0.
JEN(3)

Equivalent to a central DG scheme.

Q for the nodal DG example.

Can show that . Q;; = 0 and (for periodic domains) Q;; = —Qy;.



Enforcing positivity: a first order positive subcell scheme

Add dissipation to our global matrix formulation with forward Euler
(or SSP-RK). Let d;; =dj; > 0 for i # j, >, d;; = 0.

k+1 ,
m,——— + E sz u] d,/ (Uv/ - u,) = 0 (1)
—_—

JEN( algebraic dissipation

(Equivalent to DG with LxF interface fluxes + volume dissipation)

Guermond, Popov, and Tomas (2019). Invariant domain preserving discretization-independent
schemes and convex limiting for hyperbolic systems.



Enforcing positivity: a first order positive subcell scheme

Add dissipation to our global matrix formulation with forward Euler
(or SSP-RK). Let d;; =dj; > 0 for i # j, >, d;; = 0.

k+1

oy Z Qi f(u) — dij(u;—u) =0. (1)
—_—

JEN( algebraic dissipation

(Equivalent to DG with LxF interface fluxes + volume dissipation)
Use properties of Q to rewrite (1) in terms of “bar states”

1 &
u;; = - (ui + u]-) = Qj (fj = fi), where fj = f(Uj),
2 d;;
mi k+1 2Atdw
Ktui = Zde] u; + Z

J#i JFi

Guermond, Popov, and Tomas (2019). Invariant domain preserving discretization-independent
schemes and convex limiting for hyperbolic systems.



Provable positivity under a CFL condition

; 2Atd;
%uf“ = Z 2d;; | u; + Z Yg
J#i J#i

e Bar states u;; resemble a Lax-Friedrichs intermediate state,
and preserve positivity if d;; is sufficiently large

il Q.
Uij = 5 (uj +uj) — TZ (f; — ), dij > Aax (Ui, 05, Qy5) .
e uP™! is positive (a convex combination of u; and u;;) if

m:
At < min ————.
) 2217&] dij

Guermond and Popov (2016). Invariant domains and first-order continuous finite element
approximation for hyperbolic systems.



Our work: extension to compressible Navier-Stokes

e Entropy stable discretization of viscous terms o, which include
the stress 7 + heat conduction q.

du
== > Qi (fj — 0j) — dij (uj —u;) = 0.
j

e Reformulate scheme in terms of viscous bar states:

Q;;

Uij = 5 (Ui +uj) —

((F; —oj) = (Ffi —04))
e Positivity of p, p under a (viscous) CFL condition with

dij = Imax (6(”1)7 B(u]’), )‘max(uh uj, Qz’j)a )\max(uja u;, sz))

1
Bu) > Jo-nl + 55 (VePla m) + 2% n—pmll) + pla -]

Zhang (2017). On positivity-preserving high order DG schemes for the compressible NS equations.



Sparsification of low order discretization matrices

Low order advection solutions with (solid) and without (dashed)
sparsification (from Pazner 2021).

e Algebraic artificial dissipation depends on discretization
matrices = dense operators produce too much diffusion!

e Solution: use sparse SBP operators in the low order method.

Pazner (2021). Sparse invariant domain preserving DG methods with subcell convex limiting.



Sparsification of low order discretization matrices

-1 1
, ~1 1
Q=3
-1 0 1
- _1 1_.
Q1 =0, Q+ QY =E"BE

summation-by-parts property

e Algebraic artificial dissipation depends on discretization
matrices = dense operators produce too much diffusion!

e Solution: use sparse SBP operators in the low order method.

Pazner (2021). Sparse invariant domain preserving DG methods with subcell convex limiting.



Constructing sparse low order simplicial SBP operators

e Want to preserve conservation
Q"1 = 0 and SBP property

Qv 4+ (Qm)T _B

e For neighboring i and j, assume

<Q1°W - (wa)T) ==
ij

e Enforcing Qlowl = 0 equivalent to Quadrature nodes from Chen,
Shu (2017) for a degree N = 3
1 > SBP operator. The sparse low

Z i =i = <_281 ’ order operator Q'™ uses the
J same nodes and weights.
st. pT1=0.

(2



Blending high and low order DG solutions

e Blend high and low order solutions over each element to retain
accuracy where possible while ensuring positivity.

uk—l—l _ (1 . E)uk—l—l,low + Euk—&-l,high

e Impose minimal local bounds based on low order solution with

relaxation factor a
p>ap™, p>ap,  ac(01]

e Local entropy inequality: preserved for element-wise blending.

e Local conservation: preserved if high and low order schemes
use the same interface flux.



Convergence tests: LeBlanc and viscous shock tube

N=2 N=5
h L' error Rate L' error Rate
0.02 8.681 x 1072 5.956 x 102 .
0.01 3.658 x 1072 | 1.25 | 1.436 x 1072 | 2.05
0.005 1.329 x 1072 | 1.46 | 3.630 x 1072 | 1.98
0.0025 | 6.015x 1072 | 1.14 | 1.129 x 10=2 | 1.69
0.00125 | 2.910 x 1072 | 1.05 | 5.889 x 10~* | 0.94

(a) Leblanc shock tube, relaxation factor a = 0.5

N=2 N=3
h L' error Rate L error Rate

0.025 2.305 x 1072 2.071 x 102
0.0125 9.858 x 1072 | 1.23 | 6.749 x 1072 | 1.62
0.00625 | 3.382x 1072 | 1.54 | 1.278 x 1072 | 2.40
0.003125 | 5.765 x 10=* | 255 | 1.163 x 10~* | 3.45
0.0015625 | 8.836 x 107° | 2.71 | 1.269 x 107° | 3.20

(b) 1D viscous shock, Re = 1000, relaxation factor av = 0.5

Viscous shock is run at Mach 20 to generate positivity violations.




Isentropic vortex with small minimum density

N=2 N=3 N=4
h L? error Rate L? error Rate L? error Rate

2.5 1.148 x 10° 5.958 x 10~ | 1.28 | 4.073 x 10~ *

125 | 4.865x 107! | 1.24 | 1.905 x 107! | 1.64 | 8987 x 1072 | 2.18
0.625 | 1.223 x 107 | 1.99 | 2.308 x 1072 | 3.05 | 1.511 x 1072 | 2.57
0.3125 | 1.706 x 1072 | 2.84 | 2.393 x 1072 | 3.27 | 1.915 x 10~* | 6.30

(c) Quadrilateral meshes, relaxation factor « = 0.5
N=2 N=3 N=1
h L? error Rate L? error Rate L? error Rate

25 7.887 x 1071 5.034 x 10~ * 4.059 x 1071

125 | 3.834x 107! | 1.04 | 1.881 x 107! | 1.42 | 9.890 x 102 | 2.04
0.625 | 8.993 x 1072 | 2.09 | 2.944 x 1072 | 2.68 | 1.578 x 1072 | 2.65
0.3125 | 1.298 x 1072 | 2.79 | 2.606 x 10~% | 3.50 | 4.258 x 10~* | 5.21

(d) Triangular meshes, relaxation factor o = 0.5

Challenging vortex parameters: p,;, — 2.145 x 10~°




Compressible Euler: double Mach reflection

(a) Subcell positivity-preserving entropy stable nodal DG, a = 0.5, = .2

a4 ]

(b) Subcell invariant domain preserving nodal DG (Pazner 2021), T' = .275

Density for N = 3 entropy stable DG (250 x 875 elements) and a reference solution
(600 x 2400 elements). Note: positivity is sensitive to the wall boundary treatment!

van der Vegt and Ven (2002). Slip flow boundary conditions in dG discretizations of the Euler



Compressnble Euler: Sedov blast wave

(@) a=0.1 (b) a=0.5 (c) &« =0.1 + shock
capturing

Quadrilateral meshes with 100% degree N = 3 elements.



Compressnble Euler: Sedov blast wave

(@) a=0.1 (b) a=0.5 (c) &« =0.1 + shock
capturing

Triangular meshes with 100 degree N = 3 elements.



Compressible Navier-Stokes: Daru-Tenaud shock tube

(a) Reference solution (512M nodes)  (b) Degree N = 3, 600 x 300 grid

Comparison of a 4th order positivity-preserving entropy stable DG method
with a “grid-converged” reference solution from Guermond et al. (2022).

Guermond, Kronbichler, Maier, Popov, Tomas (2022). On the implementation of a robust and
efficient finite element-based parallel solver for the compressible Navier-Stokes equations.



Many phenomena are sensitive to “shock capturing”

(c) With entropy stable shock (d) Dzanic and Witherden (N = 4,
capturing (IV = 2, 400 x 200) 800 x 400 grid)

Hennemann et al. (2021). A provably entropy stable subcell shock capturing approach for high order
split form DG methods for the compressible Euler equations.

Dzanic, Witherden (2022). Positivity-preserving entropy-based adaptive filtering for discontinuous
spectral element methods.



Sensitivity to shock capturing at higher Reynolds numbers

Same setup with positivity parameter o = 0.5.

Hennemann et al. (2021). “A provably ES subcell shock capturing approach for high order split form
DG for the compressible Euler equations”.



Sensitivity to shock capturing at higher Reynolds numbers

Degree N = 2, 200 x 100 mesh with positivity parameter o = 0.1.

Positivity parameter & = 0.1 with Hennemann (2021) shock capturing.

Hennemann et al. (2021). “A provably ES subcell shock capturing approach for high order split form
DG for the compressible Euler equations”.



From subcell limiting to a cell
entropy inequality




Subcell resolution vs subcell blending

® o| GL nodes
— FV subcells

‘ [ ] ‘ [ ] ‘ L ] L
— DG element

1 1
-1.0 -0.5 0.0 0.5 1.0

Figure from Hennemann et al. 2021.

e The low order method has subcell resolution, but element-wise
constant high/low order blending.

e It is possible to perform blending at a subcell level; however,

subcell blending does not necessarily preserve entropy stability!

e Not all entropy inequalities preserve high order accuracy ...

Hennemann et al. (2021). “A provably ES subcell shock capturing approach for high order split form
DG for the compressible Euler equations”.



Start with a (possibly non-ES) semi-discrete nodal DG formulation:

d 1 * *
mi—u + i+ (0i,n11fp — 8iaf7) = 0, Z rj =0
dt N

conservation

This is algebraically equivalent to the following scheme

du; - =
i +fiy1 —f; =0,
m It + i1

where f; are “reconstructed” finite volume-type fluxes

7
fl_H':er, 1=1,...,N+1
j=1

fN+2 = fﬂ}}



Subcell finite volume formulation

Blend high and low order schemes with subcell fluxes.

dui = —
m; + [lz’+1f?+1 + (1 = lit1) f£+1]

fitr1

{
[
|
[
|
}
I

f;

e [; =1 = recovers high order nodal DG.
l; =0 = recovers low order invariant domain scheme.

e Pick largest I; to satisfy positivity constraints while retaining
as much of the high order method as possible.

Rueda-Ramirez, Andrés et al., “Subcell limiting strategies for DG spectral element methods.”



Enforcing entropy stability as a pointwise constraint

e Option 1: minimum entropy principle (fully discrete).

s; > min s7.

JEN (i)
e Option 2: semi-discrete condition on subcell fluxes

(Vi —vie1)" Fi <9 (wg) — 9 (ui1)

N =2 N=3 N=4
L? error Rate L? error Rate L? error Rate
5 | 7.498 x 10! 4.499 x 10~ ! 3.135 x 1071

10 | 3.343 x 1071 | 1.17 | 2.109 x 107! | 1.00 | 1.486 x 10! | 1.08
20 | 1.894 x 10~ | 0.82 | 1.092 x 10~ | 0.95 | 7.509 x 10=2 | 0.98
40 | 9.718 x 1072 | 0.96 | 5.956 x 1072 | 0.87 | 4.160 x 102 | 0.85
80 | 5.116 x 1072 | 0.93 | 3.186 x 10~2 | 0.90 | 2.157 x 10~2 | 0.95

Neither “pointwise” approach retains high order accuracy.

Tadmor, Eitan. “A minimum entropy principle in the gas dynamics equations.”

Kuzmin, Dmitri et al., “Limiter-based entropy stabilization of semi-discrete and fully discrete schemes
for nonlinear hyperbolic problems.”



Enforcing a cell entropy inequality

Choose 11, ...,In12 over each element to enforce

d
VTMCT;‘ < (Y(un+1) = viafh) — () —vif])
N+1

== Z (Fir1(liv1) — £ (L)) < (ung) — (uy),

where fl(ll) = llff{ -+ (1 = ll)fZL

N =2 N=3 N=14
K L? error Rate L2 error Rate L? error Rate
5 | 6.935 x 10! 2.498 x 107! 1.587 x 1071

10 | 1.785 x 10~ | 1.96 | 7.083 x 1072 | 1.82 | 2.000 x 10~2 | 2.99
20 | 4.126 x 1072 | 1.11 | 8.898 x 103 | 2.99 | 9.557 x 10=* | 4.39
40 | 6.714 x 1073 | 2.62 | 8.163 x 107* | 3.45 | 3.142 x 107° | 4.93
80 | 1.210 x 1073 | 2.74 | 4.208 x 107° | 4.28 | 1.530 x 1076 | 4.36

Enforcing a cell entropy inequality recovers high order accuracy.



Formulation as an optimization problem

Maximizing limiting factors I; while enforcing cell entropy inequality

N+1

S ovl (Fa(livn) — Fi(ls) < Plungr) — 9(u)

=1

can be posed as a continuous knapsack problem, which admits a
fast and explicit O(nlog(n)) solution algorithm.

N
mlax Z l;
i=1

N
s.t. Zaili <b
=1
0<y <If

where I$ < 1 is a limiting factor upper bound to ensure positivity.



Modified Sod shock tube

DGSEM

— ESDG — —ESDG
DGSEM + Cell entropy stability M + Cell entropy stability
— - - DGSEM + Minimum entropy principle — - - DGSEM + Minimum entropy principle

Naive (DGSEM) and entropy stable (ESDG) DG discretizations with
different limiting strategies for enforcing an entropy principle.

An entropy glitch appears without some form of entropy inequality
(e.g., minimum entropy principle or cell entropy inequality).



2D KPP problem

(a) Shock capturing only (b) Shock capturing and cell
entropy inequality

Hennemann (2021) shock capturing with and without cell entropy
inequality (degree N = 3,128 x 128 elements).

Hennemann et al. (2021). A provably entropy stable subcell shock capturing approach for high order
split form DG methods for the compressible Euler equations.




Kelvin Helmholtz instability

(a) ESDG, T =5 (b) ESDG, T =75  (c) ESDG, T = 10

(d) DGSEM, T =5 (e) DGSEM, T =7.5 (f) DGSEM, T = 10

Long-time KHI simulation with positivity and cell entropy inequality enforced.



Compressible Euler - Mach 2000 Astrophysical jet

(a) Subcell limited (b) Subcell limited ESDG (c) ESDG with
DGSEM + cell entropy  + cell entropy inequality element-wise positivity

inequality limiting

Density for degree N = 3, 150 x 150 elements. We enforce the relaxed
positivity bounds p > 0.5p", pe > 0.5 (pe)L.



Conclusions and acknowledgements

e Positivity preserving limiters enable robust entropy stable nodal
DG simulations of compressible flow.

e We can enforce a (high order?) cell entropy inequality for
standard nodal DG using subcell limiting.

This work is supported by DMS-1943186 and DMS-2231482.
Thank you! Questions?

Lin, Chan (2023). High order entropy stable discontinuous Galerkin spectral element methods
through subcell limiting.

Lin, Chan, Tomas (2022). A positivity preserving strategy for entropy stable discontinuous Galerkin
discretizations of the compressible Euler and Navier-Stokes equations.



Additional slides




Subcell limiting for compressible Navier-Stokes
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(a) N =3, 600 x 300 grid. (b) N =3, 300 x 150 grid.

ESDG + element-wise limiting. ESDG + element-wise limiting.
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(d) N = 3, 300 x 150 grid.
DGSEM + subcell limiting ESDG + subcell limiting

Daru-Tenaud simulations with positivity and cell entropy inequality.
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