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Science of Scale-Up

R. K. SINGH, Y. FU, C. ZENG, D. T. NGUYEN, 
P. ROY, J. BAO, Z.XU, G.PANAGAKOS, 

Chemical Engineering Journal 450 (2022) 138124.

PETRA NOVA ABSORBER TOWER 
Thompsons, TX

• Among thousands of novel technologies, only a few are deployed to industry 
• Average time from conception to commercialization: 35 years 
• Can we bridge gaps to translate innovation to real-world impact?

Example: carbon-capture technology

Laboratory scale

Industry scale

two-phase direct air capture in 
triply periodic minimal surface geometry

Conventional carbon-capture —

35 years∼
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Traditional pilot stage can be a major bottleneck

• New technology typically requires demonstration via a pilot plant 
• Pilot-stage deployment itself can take years to design, construct and operate

De Gruyter, 2021, Scale-Up Processes: 
Iterative Methods for the Chemical, Mineral 

and Biological Industries
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E-pilot to accelerate industry deployment

• Replace the physical pilot with computer simulations 
• Feed back the design process beyond mere demonstration 

- Predict scaling behavior, failure modes, and emergent phenomena 
- Facilitate the design optimization
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Conventional simulation is too expensive for E-pilot

• Conventional simulation relies on high-fidelity discretization such as FEM, FVM, …  
• Even for lab scales, computationally expensive in both memory and time 
• Approximation can be made for small scales (closure modeling, homogenization, …), 

but often renders simulations to be inaccurate

R. K. SINGH, Y. FU, C. ZENG, D. T. NGUYEN, 
P. ROY, J. BAO, Z.XU, G.PANAGAKOS, 

Chemical Engineering Journal 450 (2022) 138124.

15cm

PETRA NOVA ABSORBER TOWER 
Thompsons, TX

110m

FVM on  grid cells 
3 days on 144 processes 
for simulating 30 seconds

∼ 106
larger volume107 ×
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Machine learning is promising, but…

• Neural networks are promising alternatives 
where there is no/little physics known, but lots of data available 

• Challenge in scale-up: there is no data available at pilot/industry scale

N. Kovachki, Z. Li, B. Liu, K. Azizzadenesheli, 
K. Bhattacharya, A. Stuart, A. Anandkumar, 

 2023, Journal of Machine Learning Research, 24(89), 1-97.

Neural OperatorPhysics-informed Neural Network

M. Raissi, P. Perdikaris, G. E. Karniadakis, 
2019, Journal of Computational physics, 378, 686-707

How do we extrapolate in scale, only from small, lab-scale data?
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Our approach for extrapolation in scale

• Solve it efficiently based on data— Reduced Order Model (ROM) 

• Combine to a larger system— Discontinuous Galerkin Domain Decomposition

We already know the physics (equation) quite well. We just need to..
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Basis in Conventional FEM

Toy example: Poisson equation
−∇2q = f ≡ sin 2π(k ⋅ x + θ)

q = 0 x ∈ ∂Ω
(∇q†, ∇q)Ω = (q†, f )Ω + (q†, n ⋅ ∇q)∂Ω

• Many mesh elements with simple geometry 

-  for typical 3D simulations 

• Polynomial basis for each mesh element 

• A large-size discretized equation 

≳ 106

Can we use a basis that represents 
the solution more efficiently?

q, q† ∈ ℚ = {q ∈ H1(Ω) q |κ ∈ Vs(κ) ∀κ ∈ 𝒯(Ω)}
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Basis identified from data

• Proper Orthogonal Decomposition (POD), Principal Component Analysis (PCA), … 
• Identifies major axes of snapshot scattering 
• Reveals the low-dimensional manifold underlying physics

K. Taira, M. Hemati, S. Brunton, Y. Sun, K. 
Duraisamy, S. Bagheri, S. Dawson, C. Yeh, 

2020, AIAA Journal, 58, 3, 998-1022
q1

q2

ϕ1ϕ2

Example: from 2D to 1D

Example: flow past a cylinder

⋯

Q ≈

⋯

Φ Σ

⋮

V⊤

Effective representation of solution with a low-dimensional basis inferred from data
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Projection-based Reduced Order Model

• Galerkin projection of the physics equation onto POD basis space 
- In some sense, data-driven spectral method 

• Much faster prediction with modest accuracy compared to full order model (FOM) 
• Robust against extrapolation outside the training range

This is good, but how do we predict for a large-scale system?

q ≈

⋯

Φ q̂

 

• Samples from random  

−∇2q = f ≡ sin 2π(k ⋅ x + θ)
q = 0 x ∈ ∂Ω

(∇q†, ∇q)Ω = (q†, f )Ω + (q†, n ⋅ ∇q)∂Ω

q†⊤Lq = q†⊤f ∀q†

k
k = (k, k) k ∈ U[0,1]

ϕ1 ϕ2 ϕ3

⋯

 predictionk = 1.65
speed-up with  error170 × 2.7 %

POD basis

L̂ = Φ⊤LΦ

L q L̂ q̂≈q†⊤ q̂†

Full order model (FOM) Reduced order model (ROM)
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Using ROM as “element” with domain decomposition

• A large domain where we cannot obtain snapshot data, high-fidelity simulation 
• Decompose the domain into smaller, repeatable subdomains 
• Solve physics equation in each subdomain using ROM 
• Enforce continuity/smoothness of the solution at interfaces

ROM can be used as element with appropriate interface handling

Physics equation 
at subdomain m

−∇2qm = fm

Lmqm = fm

L̂mq̂m = ̂fm

High-fidelity full-order model

Reduced order model

Interface between 
subdomains  and m n

[[q]]m,n ≡ qm − qn = 0

{{n ⋅ ∇q}}m,n ≡
1
2 (nm ⋅ ∇qm + nn ⋅ ∇qn) = 0

Corresponding 
reduced order model
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With static condensation domain decomposition

• Component-wise reduced order model lattice-type structure design 
S. Mcbane, Y. Choi, Computer Methods in Applied Mechanics and Engineering, 381 (2021) 
- Static-condensation reduced basis element method 

D. B. P. Huynh, D. J. Knezevic, A. T. Patera, Computer Methods in Applied Mechanics and Engineering, 259 (2013) 
• Split the solution into particular (interior) / homogeneous (interface) basis 
• Limited to linear systems 

S. Mcbane, Y. Choi 
Computer Methods in Applied Mechanics and Engineering, 381 (2021)

a(u, v) = f(v) ∀v ∈ Xh(Ω)
Physics equation

u = ∑
m

[um,p + um,h] um,p, um,h ∈ Xh(Ωm)
Domain decomposition

a(um,p, vm) = f(vm) ∀vm ∈ Xh
0(Ωm)

um,p = 0 on x ∈ ∂Ωm

Particular (interior) solution

a(um,h, vm) = 0 ∀vm ∈ Xh
0(Ωm)

um,h = un,h on x ∈ ∂Ωm ∩ ∂Ωn

Homogeneous (interface) solution

Lattice-type structure design optimization
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With least-square Petrov-Galerkin

• Domain decomposition least-square Petrov-Galerkin ROM 
C. Hoang, Y. Choi, K. Carlberg, Computer Methods in Applied Mechanics and Engineering, 384 (2021) 
A. N. Diaz, Y. Choi, M. Heinkenschloss, arXiv:2305.15163 (2023) 

• Interface dofs are duplicated 
• A least-square solution with interface constraint is sought 

- Sequential Quadratic Programming (SQP) method 
for associated Karush-Kuhn-Tucker system

r(x) = 0 x ∈ ℝN

Physics (discretized) equation

 

such that 

min
(xΩ

m,xΩ
m)

1
2 ∑

m

rm(xΩ
m, xΓ

m)
2

PmxΓ
m − PnxΓ

n = 0 ∀m, n

DD-LSPG solution

A. N. Diaz, Y. Choi, M. Heinkenschloss 
arXiv:2305.15163 (2023)

Two-domain schematic
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With least-square Petrov-Galerkin

• Domain decomposition least-square Petrov-Galerkin ROM 
C. Hoang, Y. Choi, K. Carlberg, Computer Methods in Applied Mechanics and Engineering, 384 (2021) 
A. N. Diaz, Y. Choi, M. Heinkenschloss, arXiv:2305.15163 (2023) 

• Discretization-agnostic: FEM, FDM, … 
• Applicable for general nonlinear physics 
• Difficulty in enforcing continuity 

- Strong enforcement can lead to a trivial interface solution 
- Stochastic weak enforcement does not respect the physics

 

such that 

 

min
(xΩ

m,xΩ
m)

1
2 ∑

m

rm(xΩ
m, xΓ

m)
2

Cm,n (PmxΓ
m − PnxΓ

n) = 0 ∀m, n
Cm,n ∼ N[0,12]Nmn

DD-LSPG solution

Burger’s equation

A. N. Diaz, Y. Choi, M. Heinkenschloss 
arXiv:2305.15163 (2023)
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Challenges in handling ROM interfaces 

• POD (or other data-driven) basis does not guarantee 
the continuity/smoothness of the solution over interfaces 

• Existing ROM+DD methods employ separate interface basis 
- Limited to linear system 
- Arbitrary weak enforcement of continuity

A. N. Diaz, Y. Choi, M. Heinkenschloss 
arXiv:2305.15163 (2023)

S. Mcbane, Y. Choi 
Computer Methods in Applied Mechanics and Engineering, 381 (2021)
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Discontinuous Galerkin domain decomposition

• DG basis does not have to match at element interface 
• Discontinuity is allowed at interface, yet controlled under a desired numerical error  
• Well-established: developed for various nonlinear physics 

- Poisson equation: P. Hansbo, GAMM‐Mitteilungen 28.2 (2005) 
- Steady Stokes flow: A. Toselli, Mathematical Models and Methods in Applied Sciences 12.11 (2002) 
- Incompressible/compressible Navier-Stokes flow: B. Cockburn, G. E. Karniadakis, C.-W. Shu, Springer Berlin Heidelberg, (2000) 
- … 

• Not limited to each finite element— 
same discretization can be used for general domain decomposition

DG domain decomposition provides simplicity/flexibility for data-driven FEM, 
without separate interface basis/handling

a(q, q†) = f(q†) ∀q† ∈ Xh(Ω)
Physics equation

a(qm, q†
m) + ∑

∂Ωm∪∂Ωn≠∅

ã(qm, qn, q†
m, q†

n) = f(vm) ∀q†
m, q†

n ∈ Xh(Ω)
DG domain decomposition

qm

qn

[[q]]m,n

{{n ⋅ ∇q}}m,n
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Example: Poisson equation

• Interior Penalty Method 
P. Hansbo, GAMM‐Mitteilungen 28.2 (2005)

 −∇2q = f

M

∑
m

⟨∇q†
m, ∇qm⟩Ωm

+ ∑
Γm,n≠∅

[−⟨{{n ⋅ ∇q†}}, [[q]]⟩Γm,n
− ⟨[[q†]], {{n ⋅ ∇q}}⟩Γm,n

+ ⟨γΔx−1[[q†]], [[q]]⟩Γm,n] =
M

∑
m

⟨∇q†
m, f⟩Ωm

M

∑
m

q†⊤
m Lmqm + ∑

Γm,n≠∅
(q†⊤

m q†⊤
n ) (Lmm Lmn

Lnm Lnn) (qm
qn) =

M

∑
m

q†⊤
m fm ∀q†

m ∈ ℝNm

DG operators ,  can be seamlessly projected onto POD basisLm Lmn
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Poisson equation— basis construction

• One unit component, 4225-dof FEM solution 

• Sampling for POD basis construction ( ) 

                  

• 4225 random samples on parameters 
• Only 15 basis vectors can represent 99.77% of all samples

M = 1
f = sin 2π(k ⋅ x+θ)
q = sin 2π(kb ⋅ x+θb) x ∈ ∂Ω

k, kb ∼ U[−0.5,0.5]2

θ, θb ∼ U[0,1]

x1

x
2

u(x)

( 99.77% coverage

POD mode i

S
in
g
u
la
r
v
a
lu
e

i�
1

(a) Sample solution (b) POD mode spectrum
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• Dimension reduction from  to  

• No particular basis/handling for interface

Nm = 4225 N̂m = 15

ROM as a data-driven DG element

• Galerkin projection on POD basis space 
qm ≈ Φmq̂m q†

m ≈ Φmq̂†
m

M

∑
m

q̂†⊤
m L̂mq̂m + ∑

Γm,n≠∅
(q̂†⊤

m q̂†⊤
n ) (L̂mm L̂mn

L̂nm L̂nn) (q̂m

q̂n) =
M

∑
m

q̂†⊤
m Φ⊤

mfm ∀q̂†
m ∈ ℝN̂m

L̂m = Φ⊤
mLmΦm L̂mn = Φ⊤

mLmnΦn

-component system32 × 32

Unit component ROM

Simple extrapolation in scale 
only with component-scale data

M

∑
m

q†⊤
m Lmqm + ∑

Γm,n≠∅
(q†⊤

m q†⊤
n ) (Lmm Lmn

Lnm Lnn) (qm
qn) =

M

∑
m

q†⊤
m fm ∀q†

m ∈ ℝNm
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Fast & Robust extrapolation in scale

• Over all scales, achieves  speed-up with relative error 
• Can make a prediction for larger system 

- FOM cannot be assemble over larger system at given memory limit 
• Robust prediction against a qualitatively different problem out of training data

∼ 40 × ∼ 1 %
∼ 104 ×

≳ 103 ×
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ROM FOM

Spiral problem

Computation time Accuracy  Spiral problem32 × 32

40 ×

S. Chung, Y. Choi, P. Roy, T. Moore, T. Roy, T. Y. Lin, D. Y. Nguyen, C. Hahn, E. B. Duoss, S. E. Baker, 
“Train Small, Model Big: Scalable Physics Simulators via Reduced Order Modeling and Domain Decomposition”, 

arXiv:2401.10245 (2024) (submitted to Computer Methods in Applied Mechanics and Engineering)
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Stokes flow DG formulation

• A. Toselli, Mathematical Models and Methods in Applied Sciences 12.11 (2002)

q = (u, p)−∇2u + ∇p = 0
∇ ⋅ u = 0

M

∑
m

[⟨∇u†
m, ∇um⟩Ωm

− ⟨∇ ⋅ u†
m, pm⟩Ωm

− ⟨p†
m, ∇ ⋅ um⟩Ωm]

+ ∑
Γm,n≠∅

[−⟨{{n ⋅ ∇u†
m}}, [[um]]⟩Γm,n

− ⟨[[u†
m]], {{n ⋅ ∇um}}⟩Γm,n

+ ⟨γΔx−1[[u†
m]], [[um]]⟩Γm,n

+ ⟨[[n ⋅ u†
m]], {{pm}}⟩Γm,n

+ ⟨{{p†
m}}, [[n ⋅ um]]⟩Γm,n] = 0

M

∑
m

q†⊤
m Lmqm + ∑

Γm,n≠∅
(q†⊤

m q†⊤
n ) (Lmm Lmn

Lnm Lnn) (qm
qn) =

M

∑
m

q†⊤
m fm ∀q†

m ∈ ℝNm

Lm = (Km B⊤
m

Bm 0 ) Lm,n = (
Km,n B⊤

m,n

Bm,n 0 )

q† = (u†, p†)

• Each DG operator has a saddle-point block matrix system
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Stokes flow with multiple ROM elements

• Flow problems for arrays of 5 unit objects
Empty Circle Square Star Triangle

• 1400 samples on random  arrays with random in-flow conditions 2 × 2

u = (u0 + Δu sin 2π(ku ⋅ x+θu)
v0 + Δv sin 2π(kv ⋅ x+θv)) on x ∈ ∂Ωin

∂Ωin∂Ωin

Sample 2 |u |Sample 1 |u |

u0, v0 ∼ U[−1,1] ku, kv ∼ U[−0.5,0.5]2

Δu, Δv ∼ U[−0.1,0.1] θu, θv ∼ U[0,1]

⋯Φ1

⋯Φ2

⋯Φ3

POD basis



2/3

Unified POD basis

• POD is performed over the entire solution vector space

⋯

Q ≈

⋯

Φ Σ

⋮

V⊤

Q = (u1 u2 ⋯
p1 p2 ⋯) Φ = (

Φu

Φp) = (
ϕu1 ϕu2 ⋯
ϕp1 ϕp2 ⋯)

• POD basis is given as  pairs 
•  and  are constrained by linear correlation inferred from data 
• FOM saddle-point operator becomes monolithic

(u, p)
u p

u

p
ϕ = (ϕu, ϕp)

Unified basis schematic

L̂ = Φ⊤LΦ
= Φ⊤

u KΦu + Φ⊤
u B⊤Φp + Φ⊤

p BΦu
L = (K B⊤

B 0 )
FOM operator ROM projection
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Able to predict an emergent phenomenon

• Over all scales, achieves  speed-up with relative error 
• Flow tends to accumulate over ‘empty’ components 

- higher flow speed than training data 
• Robust prediction with  error for emergent phenomena

∼ 15 × ∼ 1 %

∼ 10 ×
≲ 3 %
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Rapid convergence with basis dimension

• ROM is effective when physics underlies on a lower-dimensional subspace 
• Rapid convergence can be achieved as the basis vectors span the underlying subspace
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Steady Navier-Stokes— handling nonlinear advection

• Naively, nonlinear weak-form is integrated over every element, every quadrature point 
- No benefit of dimension reduction 

• Projection of a quadratic term is precomputed as a 3rd-order tensor operator 
• While its complexity scales fast, a reasonable speed-up can be achieved with moderate 

basis dimension

q = (u, p)u ⋅ ∇u−ν∇2u + ∇p = 0
∇ ⋅ u = 0

q† = (u†, p†)

M

∑
m

[⟨u†
m, um ⋅ ∇um⟩Ωm

+⟨ν∇u†
m, ∇um⟩Ωm

− ⟨∇ ⋅ u†
m, pm⟩Ωm

− ⟨p†
m, ∇ ⋅ um⟩Ωm]

+ ∑
Γm,n≠∅

[−⟨ν{{n ⋅ ∇u†
m}}, [[um]]⟩Γm,n

− ⟨ν[[u†
m]], {{n ⋅ ∇um}}⟩Γm,n

+ ⟨γΔx−1[[u†
m]], [[um]]⟩Γm,n

+ ⟨[[n ⋅ u†
m]], {{pm}}⟩Γm,n

+ ⟨{{p†
m}}, [[n ⋅ um]]⟩Γm,n] = 0

um = ∑
i

ϕu,i ̂ui u†
m = ∑

i

ϕu,i ̂u†
i

⟨u†, u ⋅ ∇u⟩Ω
= ∑

i, j,k

̂u†
i ⟨ϕ†

u,i, ϕu, j ⋅ ∇ϕu,k⟩Ω
̂uj ̂uk = ∑

i, j,k

̂u†
i Tijk ̂uj ̂uk

N[q] = (K+C(u) B⊤

B 0 )
FOM operator

ROM Tensor projection

N̂ = Φ⊤
u KΦu+T(û)+Φ⊤

u B⊤Φp + Φ⊤
p BΦu

ROM projection
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The choice of ROM basis must respect physics

• ROM with unified basis fails to converge in Newton iterations 
• In unified basis vectors,  and  are constrained by linear correlations from training data 

- Sufficient for linear Stokes flow system 
• Linear correlations break down with nonlinear convection 
• Separate basis for  and  is necessary— leads to a similar saddle-point ROM operator

u p

u p

u

p
ϕ = (ϕu, ϕp)

Unified basis schematic

u

p

ϕu

ϕp

Separate basis schematic

Newton iterations for  array at 8 × 8 Re = 1

Φ = (
Φu

Φp) = (
ϕu1 ϕu2 ⋯
ϕp1 ϕp2 ⋯) Φ = (

Φu 0
0 Φp) N̂[q] = (

Φ⊤
u KΦu+T(u) Φ⊤

u B⊤Φp

Φ⊤
p BΦu 0 )

New ROM projection
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ROM also must satisfy necessary physics conditions

• Naive separation of velocity/pressure leads to spurious pressure modes 
• Solution space for saddle-point systems must satisfy the inf-sup condition 

O. Ladyzhenskaya, (1963) I. Babushka, (1971) F. Brezzi, (1974) 
• Just as for standard FEM, ROM basis is also subject to the same inf-sup condition 
• ROM basis, inferred from incompressible flow data, is also divergence-free 
• Without compressible  components,  is underdeterminedu p

Pressure at , errorRe = 1 4.2 %

N̂[q] = (
Φ⊤

u KΦu+T(u) Φ⊤
u B⊤Φp

Φ⊤
p BΦu 0 )

ROM projection

∇ ⋅ ϕu,i ≈ 0 ∀i
Divergence-free ROM basis

Or, BΦu ≈ 0

∇ ⋅ u = 0
Incompressible, divergence-free condition
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Augment velocity basis to stabilize pressure

• Supremizer enrichment for stabilizing pressure 
F. Ballarin, A. Manzoni, A. Quarteroni, G. Rozza, International Journal for Numerical Methods in Engineering 102.5 (2015) 1136-1161 

• Demonstrated the speed-up/accuracy at Re=10 
• Ongoing demonstration for higher Reynolds numbers

ϕs,i = ∇ϕp,i

Or Φs = BΦp

Φs = GS[Φs]

Φ̃u = (Φu Φs)

Supremizer from pressure basis

Orthonormalization

Augment velocity basis

Flow speed, error1.3 % Pressure, error0.9 %

Prediction for  array, 16 × 16 Re = 10

 basis, speed-up(nu, ns, np) = (40,40,40) 18.7 ×
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Toward general nonlinear physics

• Standard FEM 
- Analytical, polynomial basis 
- Weak-form evaluation at prescribed quadrature points/weights 

• Data-driven FEM 
- Data-inferred POD basis 
- Data-inferred, empirical quadrature points (EQP)

Find minimum  and ,  such that Nk > 0 {wk} {xk}

max
s,i

⟨ϕi , 𝒩[qs]⟩Ω
−

Nk

∑
k

wkϕi(xk)𝒩[qs(xk)] < ϵ

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x1

x
2

ROM prediction with 155 EQP

EQP non-negative least-square problem

Tensor EQP
Vel error 0.17% 0.36%

Pres error 0.35% 0.32%

Speed-up 10.47x 10.25x

Performance comparison

T. Chapman, P. Avery, P. Collins, C. Farhat, 
International Journal for Numerical Methods in Engineering 109.12 (2017) 1623-1654
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• scaleupROM: https://github.com/LLNL/scaleupROM.git 
• Active development toward more complex physics 

- Unsteady N-S flow, nonlinear elasticity, … 
• Preconditioning for ROM-FEM

Moving forward—

Data center heat exchanger

Direct air capture column

S. Chung, Y. Choi, P. Roy, T. Moore, T. Roy, T. Y. Lin, D. Y. Nguyen, C. Hahn, E. B. Duoss, S. E. Baker, 
“Train Small, Model Big: Scalable Physics Simulators via Reduced Order Modeling and Domain Decomposition”, 

arXiv:2401.10245 (2024) (submitted to Computer Methods in Applied Mechanics and Engineering)

Preconditioner for iterative ROM-FEM solver
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