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Example: Compressed Turbulence (Nek5000-CPU)

G. Giannakopoulos, K.Keskinen, J.Kochand, M.Bolla, C.E.Frouzakis, Y.M. Wright, K. Boulouchos, M. Schmidt, B. Böhm and A. Dreizler, Characterizing the evoluEon of boundary layers in 
IC engines by combined laser-opEcal diagnosEcs, direct numerical and large-eddy simulaEons, Flow, Turbulence and Combus3on. 
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FIGURE 2.9 DNS of compression in an optical engine. Iso-contours of heat flux along
the cylinder walls at 15o bTDC, left-to-right: bird’s eye view, cylinder head, piston.

Zurich-based study is to investigate the evolution of the momentum and thermal
boundary layers [78]. Figure 2.9 depicts isocontours of the wall heat flux on
the cylinder liner, head and piston surfaces towards the end of compression.
A strong correlation between the flow and heat flux structures is observed with
finer structures generated as the Reynolds number increases during compression.
In agreement with previous observations [79], higher heat fluxes were noted at
regions where the flow is predominantly impinging/stagnating, as evidenced by
the higher values at the right part of the piston surface compared to the left
(Fig. 2.9, right), where the tumble vortex impinges on the piston. For the same
reason, the heat flux is higher on the left part of the cylinder head. Significant
heat flux values are seen at the entrance of the large crevice volume of the optical
engine (Fig. 2.9, left) as a result of the intense, hollow jet flow that is formed in
this region. The study of crevice flows is of interest also with respect to unburned
fuel and pollutant emmissions.

These spectral element simulations were performed using Nek5000 [80] on
802 1.3 GHz Intel KNL nodes (51328 cores, one MPI rank per core) of the
ALCF supercomputer, Theta, at Argonne National Laboratory (n/P=13.8K).
Second-order, single-stage, characteristics timestepping was used with a target
CFL of 2.5. Roughly 40 pressure iterations per step were required when using
the Nek5000 default additive Schwarz preconditioner described in [81]. The
time-per-step is 2.25 seconds.
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61-Pin Wire-Wrap Bundle with Blockage   E. Merzari, PSU

E=4.46M, N=7, n = 1.55B
P=480 V100s,  n/P = 3.24M
tstep = 0.586 s/step

q 36000 steps in a 6-hour run
q 60 hours on 10% of Summit
q Pressure:

q 85% of runtime
q PMG with Chebyshev-Schwarz smoothing
q Boomer AMG coarse-grid (34% runtime)

q Advection: 
q 2nd-order characteristics: CFL=1.5 (10% runtime)

Runtime Stats:



Summit-Mira Comparison Ramesh Balakrishnan ANL

E=3.14M, N=7, n = 1.08B

Mira:  Nek5000
P=524288 ranks (262144 cores)
n/P = 2060
0.496 s/step (CFL ~ 0.45)
24 hour run (of several)

Summit:  NekRS
P=528 ranks (528 V100s)
n/P = 2.05M
0.146 s/step (CFL ~ 0.45)
24 hour run (of several)

Summary:    
At strong-scale limit (80% eff.)

- NekRS+Summit à 3.4X faster than Nek5000+Mira
- Requires about 10% of Summit resources vs. ½ Mira

(This result not a foregone conclusion…2020 BP Paper.)

Nek5000 DNS of flow past a periodic hill at Re=19,000 on ALCF Mira. Ramesh Balakrishnan, ANL



Objective:

q Develop a fast, efficient, scalable code for simulating turbulence in complex 
domains on exascale platforms.

q Approach:
q High-order spectral element discretizations:

- reduced n for fixed Re, or
- increased Re for fixed n                   [ costs scale as O(n) ]

q Fast GPU kernels on each node               [ Warburton group, CEED ]

q Strong-scale as far as possible 
- largest possible P for fixed n à n/P as small as possible
- design to minimize communication, coarse-grid solve overhead



Nek5000/CEM/RS Design Principles

q Efficient high-order discreKzaKons
- Minimize number of gridpoints and data movement for a given engineering-level accuracy
- Cost per gridpoint equivalent to or lower than low-order discre<za<ons
- Fast implementa<ons on each node (par<cular focus on GPUs for NekRS)
- Strongly scalable, i.e., use as many nodes as possible for reasonable efficiency (e.g., parallel 

efficiency h ~ 80%) — important for speed.

q Support broad range of physics needed for engineering applicaKons
- Large number of boundary condi<ons 
- Turbulence models (LES, uRANS of mul<ple flavors) 
- Compressible flow (low-Mach), combus<on
- Complex meshes, nonconforming meshes, moving geometries (ALE)
- State-of-the-art Lagrangian par<cle tracking with 1-way, 2-way,  and 4-way [Zwick&Balachandar ‘19]
- Maxwell, Poisson-Nernst-Planck (e.g., ion channels, molten salt)



Parallelism:   Stong-Scaling, Time to SoluMon, and Energy ConsumpMon

Observations:
1. Time-to-solution goes down with increasing P, particularly for h = 1.
2. For h = 1, energy consumption ~ P x tsol = constant — no penalty for increased P.
3. The red curve can use more processors than the blue.  WHY?
4. Why (for a problem of any size), do we find h < 1?    

- What is the root cause of the fall-off, and can we do something about it??



Same Data, Strong-Scale vs. P or n/P and Efficiency or MDOFS vs n/P
q Plotting MDOFS vs. n/P is more 

universal than time vs. P:
- Allows code-to-code comparison.
- Identifies n0.8 , the local problem size,    

(n/P),  that realizes h = 0.8.

q Why do we care about n0.8 ?
- Min time-to-solution (at h = 0.8) is 

W n0.8
t0.8 = ⏤⏤

MDOFS

q HPC users run at this point
- Design for performance at this point
- Analyze system-level approaches to 

reducing n0.8
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BP1/3/5 Bake-Off Problems on BG/Q:   BP5=SEM Poisson Solve

2 4 6 8 10 12
Polynomial order, p

10°4

10°3

10°2

t 0
.8

D/M

D
D D D

N N
N

N/D N

N/D N/D

M

D

D D

N
N

N
N

N N

N/D
N/D

N: Nek5000
D: deal.II
M: MFEM

BP5 and BP6 t0.8

BP5

BP6

2 4 6 8 10 12
Polynomial order, p

10°4

10°3

10°2

t 0
.8

M

D=M

D D N N N N N

N/D

D
D

M

D=M

D D

N
N

N

N N

N

D
D

N: Nek5000
D: deal.II
M: MFEM

BP3 and BP4 t0.8

BP3

BP4

2 4 6 8 10 12
Polynomial order, p

10°4

10°3

10°2

t 0
.8 M M

M M M M M
N/M

M N/M

M/D
M/D

M M
M M M M

N
M/N

M N/M

M/D
M/D

N: Nek5000
D: deal.II
M: MFEM

BP1 and BP2 t0.8

BP1

BP2

q Times are the minimum-<me-per itera<on at h = 0.8
- Idea of the bake-off is to compare performance of mul@ple codes (here, Nek, MFEM, and deal.ii)   

over a large range of run@me parameters: polynomial order, number of elements, problem types,  
and to resolve any major discrepancies, i.e., to help all teams realize the fastest possible performance.

- For BP5, the SEM Poisson solve, Nek5000 is the fastest (has the lowest t0.8 ) for its target opera@ng 
range of N=7—13.



Outline:

0.  Introduction (preceding slides)

1. Mathematical Background
q Discretization - SEM
q Navier-Stokes timestepping
q Pressure Poisson Problem & Preconditioning

2. Parallel Computing Concerns
q Scalability  çè Speed



Incompressible Navier-Stokes Equations

• Key algorithmic / architectural issues:

– Unsteady evolution implies many timesteps, significant reuse of preconditioners, 
data partitioning, etc.

– div u = 0 implies long-range global coupling at each timestep
à communication intensive iterative solvers

– Small dissipation à large number of scales, large number of timesteps
à large number of grid points for high Reynolds number, Re



Influence of Scaling on Discretization

Large problem sizes enabled by peta- and exascale computers allow propagation
of small features (size �) over distances L � 1.

If speed ⇡ 1, then tfinal ⇡ L/�.

• Dispersion errors accumulate linearly with time:

error ⇠ |correct speed - numerical speed| ⇤ t (for each wavenumber, k)

error(tfinal) ⇠ (L/�) ⇤ |numerical dispersion error|

• For fixed final error, ✏f , require:

numerical dispersion error ⇠ (�/L)✏f ⌧ 1.

H .O. Kreiss, J. Oliger, Comparison of accurate methods for the
integration of hyperbolic problems, Tellus 24, 199–215, 1972.



Spectral Element Method A. Patera ‘84

2D basis func,on, N=10

– VariaKonal method, similar to FEM, using GL quadrature.

– Domain parKKoned into E high-order hexahedral elements

– Trial and test funcKons represented as N th-order tensor-product polynomials 
within each element.  (N ~ 4 - 15, typ.)  

– QualitaKvely different from p-type FEM

• n ~ EN 3 grid points in 3D

• Fast operator evaluaKon:  O(n) storage, O(nN) work

– Converges exponenLally fast with N for smooth soluKons. 



Spectral Element Convergence: Exponential with N

Exact Navier-Stokes Solution  (Kovazsnay ‘48)
q 4 orders-of-magnitude 

error reduction when 
doubling the resolution in 
each direction

q For a given error,
q Reduced number of gridpoints 

q Reduced memory footprint.
q Reduced data movement.



Excellent Transport Properties, even for Nonsmooth Solutions

q Convection of nonsmooth data on.       
a 32x32 grid

q K1 x K1 spectral elements of order N

(cf. Gottlieb & Orszag, Spectral Methods, 
1977)



High-Order is Efficient for Tracking Small-Scale Structures

• Flow in a model IC engine
• Re=45,000



Vortex Breakdown at ReD = 45,000
q These are well-resolved calculations performed on ANL’s Theta
q Note the fine filamental horseshoe vortices around the base of the valve stem that 

ultimately breaks down into a chain of hairpin vortices.
q Although turbulent, the flow is not random!



Costs

N=10

N=4

• Cost dominated by iteraFve solver costs,  proporUonal to
– itera<on count
– matrix-vector product + precondi<oner cost

• Locally-structured tensor-product forms:

– minimal indirect addressing

– fast matrix-free operator evalua>on 

– low-cost local operator inversion via fast 
diagonaliza<on method  (Lynch et al. ’64)



Fast Operator Evaluation:  Matrix-Matrix Products / Tensor Contractions
Consider a single element, (r, s) 2 ⌦̂ := [�1, 1]2 :

• u(r, s) =
NX

j=0

NX

i=0

uij li(r)lj(s), li(rj) = �ij
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• 2N 2 reads, 2N 3 ops

• 3D: N 3 reads (u), 2N 4 ops

• SEM performance design objective:
All evaluations with O(n) = O(EN

3) reads and  O(EN
4) ops.
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Figure 2: Application of the Gordon-Hall algorithm in lR3. Subscripts i, j, and k range from 0 to N .
Summations involving ı̂, |̂, and k̂ range from 0 to 1, accounting for contributions from opposing faces in each
of the three coordinate directions. The outputs of each of the three phases, vertex-, edge-, and face-extension,
are indicated be v, e, and f , respectively. The final geometry is given by x := f and is defined at all interior
and surface points.
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Fast Operator Evaluation:  Matrix-Matrix Products / Tensor Contractions

Complexity improves with increasing space dimension, d = 1, 2, 3:

• 1D : ur =
X

p

D̂ipup N
2 reads, 2N 2 ops.

• 2D : ur =
X

p

D̂ipupj 2N 2 reads, 2N 3 ops.

• 3D : ur =
X

p

D̂ipupjk N
3 reads, 2N 4 ops.

Note, nodes on ⌦̂ = [�1, 1]d are taken to be tensor products of the
Gauss-Lobatto-Legendre points, ⇠j, the roots of (1� ⇠

2)P 0
N(⇠),

where PN is the Legendre polynomial of degree N .

• Stability: Condition number of Â = O(N 3), âij :=
R
⌦̂ r�i · r�j dV .

• Accurate quadrature: diagonal mass matrix



Spectral Element Matrix-Free Operator Evaluation  Orszag 80
q Spectral element coefficients stored in local (uL) form, not global (u)

q Example: Application of SEM Laplacian

22

local work (matrix-matrix products)
nearest-neighbor (gather-scatter) exchange

Majority of ops.                  Majority of memory refs.



Impact of Order on Costs

z = D -1 r
r = r t z
p = z + b p
w = A p
s = w t p
x = x + a p
r = r – a p

q Only one operation depends on order—the remaining, memory-bound, depend on 
number of gridpoints, n.

- Reducing n is an effective way to reduce data movement.

q For incompressible Navier-Stokes, however, preconditioning is the dominant cost.

q To leading order, cost scales as number of gridpoints, regardless of approximation order.   

q Consider Jacobi PCG as an example:



Runtime is Weakly Dependent on Polynomial Order, N

Electromagnetics Example:  NekCEM (M. Min)           Jacobi PCG-BP5 (T. Warburton)

FLOPs count of n or 2n and data reads involving only one
or two 64-bit words per operation. Assembly for the
matrix–vector products (the QQT operation in equation
(1A)) is invoked in two stages. Values corresponding to
vertices shared within a GPU are condensed on the GPU.
Values for vertices shared between GPUs are sent through
the host and then condensed through a pairwise exchange
and sum across the corresponding MPI ranks. For all of the
studies, we use a total of P ¼ 24 GPUs: six GPUs on each
of four nodes of Summit.

Figure 18(a) shows DOFS versus n=P curves analogous
to Figures 8 to 9. At 10,000 MDOFs, the peak V100 per-
formance is substantially higher than the peak of 80
MDOFs realized for a single node of BG/Q. The n0:8 is
also substantially higher on the V100—around 15 million
for one node of Summit versus a maximum of 80,000 for
BG/Q. In Figures 18(b) and (c), we plot DOFs versus time
for p ¼ 4 and 10 for the V100 and for the bake-off codes on
BG/Q. We see that, for p ¼ 4, the minimum time for Sum-
mit at 80% of its realized peak9 is smaller than the t0:8 value
realized on BG/Q. For P ¼ 10, Summit can also realize a
smaller time per iteration than BG/Q, but not at the realized
80% efficiency value. At that value, the minimum time is

0:002 s, which is about three times slower than
t0:8 ¼ 0:0007 s attained for p ¼ 10 on BG/Q.

Using plots similar to Figures 18(b) and (c), we gen-
erate time (t0:8), size (n0:8), and DOFs (r0:8) curves for
libParanumal on Summit and compare these with their
BG/Q counterparts in Figure 19. For p < 6, Summit is
able to deliver relatively small values of t0:8, subject to
the caveat that the r0:8 values for Summit in Figure 19(b)
are not fully saturated. For midrange polynomial orders, p
¼ 7–10, the minimum times on the V100 are roughly a
factor of two to three higher than on BG/Q. While the
V100 execution rates are higher (Figure 19(c)), they are
not sufficiently high to make up for the increased problem
size required to sustain 80% of the observed peak. This
imbalance results in increased time per iteration, as indi-
cated in (35).

We close this section by noting that the strong-scale
time per iteration is not the only performance metric of
interest in evaluation of exascale platforms. Cost and
energy consumption, which are not assessed in the present
studies, are also important concerns in the drive to exascale,
and accelerators have been shown to offer advantages with
respect to these important metrics.
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Figure 18. Multi GPU performance using 24 V100s: (a) BP5 DOFS versus grid points per node plot for libParanumal (libP) on Summit
with p¼1–10 (BP5 p¼ 1, . . . , 10). (b) DOFS versus time per iteration comparison on Summit and BG/Q for t0:8 with p ¼ 8 (BP5 p¼ 8).
(c) DOFS versus time per iteration comparison on Summit and BG/Q for t0:8 with p ¼ 10 (BP5 p ¼ 10).
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578 The International Journal of High Performance Computing Applications 34(5)

Periodic Box; 32 nodes, each with a 2.4 GHz Pentium Xeon

CPU time vs. #dofs, varying N.                                   Error vs. #dofs, varying N

Main Conclusion:  properly implemented high-order methods are not more expensive per DOF than their low-order counterparts

24 NVIDIA V100s



Stability

We address stability of the advection operator in several ways: 

q Filtering:
q Low-pass filter, F, as a post-processing step, or
q High-pass filter (HPF) on the rhs of the Navier-Stokes equations

q Dealiased advection operator

q As an alternative, we could consider DG + upwinding for the hyperbolic substep, as is done 
in MFEM/LAGHOS, libP, and several of the more recent high-order codes from the deal.ii
group and others in Europe.

q I’ll discuss this topic off-line with anyone who is interested.



Choice of Quadrature for Advection-Diffusion Terms

E�p = gn � Ep⇤

(v, ut) = �(v, c · ru) + ⌫(rv,ru)

Discrete Integration

(v, ut)L = �(v, c · ru)M + ⌫(rv,ru)N
Accuracy Stability StabilityTo overintegrate or not overintegrate?

• Let (v, u)N denote the discrete L
2 inner product using Gauss-Lobatto-

Legendre quadrature on N + 1 points in each direction of the reference
domain, ⌦̂ := [�1, 1]d.

• Let (v, u)M denote the discrete L
2 inner product using Gauss-Legendre

quadrature on M points in each direction.

• Let (v, u)L denote the discrete L
2 inner product using Gauss-Legendre

quadrature on M points in each direction.

If we take L = N , we get a diagonal mass matrix—inversion cost is e↵ectively
zero.

We need M > N to guarantee that (v, c · ru) is skew-symmetric (hence,
stable), but if were using DG+upwind we might not need dealiasing.



Impact of Inexact Quadrature on the ut Term                         Ainsworth ‘14
6 MARK AINSWORTH

Degree Centred DG Finite Element Spectral Element

1
iΩ3

48

iΩ5

180

iΩ3

6

2 − iΩ7

16800
− iΩ5

4320

iΩ5

1080

3
iΩ7

806400

iΩ9

3175200

iΩ7

75600

4 − iΩ11

1005903360
− iΩ9

254016000

iΩ9

31752000

5
iΩ11

120708403200

iΩ13

479480601600

iΩ11

838252800

Table 1. Leading terms for the relative error in the approxima-
tion of the Floquet multiplier for Centred Discontinuous Galerkin,
Finite Element and Spectral Element schemes applied to (1)

.

special cases of the general result proved in Theorem 2 of [1]. It seems that a
general result is not available concerning the the spectral element scheme [9]; we
have obtained the entries in Table 1 by direct computation.

Table 1 shows that the accuracy of the spectral element method is always inferior
to the finite element and centred discontinuous Galerkin methods both in terms of
the order of convergence and the magnitude of the coefficient of the leading term
in the error. It would be easy to dismiss the inferior behaviour of the spectral
element scheme as an inevitable by-product arising from the use of reduced order
integration were it not for the somewhat surprising fact [2] that, in the case of the
second order wave equation, the spectral element method propagates waves with an
accuracy superior to that of the finite element scheme.

The comparison of the finite element method and centred discontinuous Galerkin
schemes is less clear-cut with both methods exhibiting superconvergence. That is
to say, the order of convergence for the centred discontinuous Galerkin scheme
in the case of even order elements is two orders larger than one might expect.
Conversely, the finite element scheme exhibits superconvergence in the case of odd
order elements. The relative behaviour of the finite element and discontinuous
Galerkin schemes becomes even more remarkable if one compares the expression
for the leading term in the relative error (14) for the finite element scheme with
that of the centred discontinuous Galerkin scheme presented in Theorem 2 of [1]:

e−iωh/c − λDG
h,N

e−iωh/c
=

i

2

[
N !

(2N + 1)!

]2






2N + 1

N + 1

(
ωh

c

)2N+1

, N odd

− N + 1

2N + 3

(
ωh

c

)2N+3

, N even.

(16)

The reader will observe that the expression is virtually identical to the correspond-
ing expression (14) for the finite element scheme (the only difference being that the

Our Strategy: Use inexpensive diagonal mass matrix.  If you want more accuracy, increase N.  (Maday & Ronquist, 90)
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Navier-Stokes Equations
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readily solved with Jacobi-preconditioned CG.
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qPressure Poisson solve –

qEvery timestep, conditioning not improved as Dt à 0

qAlmost all Neumann conditions

qIntrinsically the most expensive step for incompressible NS (fastest timescale).

qSolving nearby problems on each step 
– leverage by projecting onto 

prior solution space

– very often just a few iterations/step

Apn = bn

A�pn = bn � Apn�1

A�pn = bn � Ap̄n,

p̄n :=
X

j

xjx
T
j b

n, xTj Axi = �ij

xj 2 span{pn�1 . . . pn�k},

Apn = bn

A�pn = bn � Apn�1

A�pn = bn � Ap̄n,

p̄n :=
X

j

xjx
T
j b

n, xTj Axi = �ij

xj 2 span{pn�1 . . . pn�k}

Solvers



qUnstructured, high-aspect-ratio elements (e.g., boundary layer elements)
qHigh-aspect-ratio subcells because of tensor-product Gauss-Lobatto-Legendre (GLL) nodes
qMany different geometric configurations – no single solver is best for all cases.

qInterested in solving problems at the strong-scale limit.

qCoarse-grid solve costs do not go to zero as 1/P:

for k = 1 : Nlevel � 1
smooth residual
exchange faces
compute residual
restrict residual
reduce n by 2⇥ in each direction

end

solve 1⇥1 system

for k = Nlevel � 1 : �1 : 1
prolongate and add correction
exchange faces
increase n by 2⇥ in each direction

end

For our analysis we assume that the load is initially balanced; that the number of points in each direction
is enumerated as 0, 1, . . . , nd, with nd = 2Nlevel ; and that the number of processors is a power of 8. A detailed
count of the operations, including the restriction, smoothing, and prolongation at each level, reveals that
the total operation count per iteration for this V-cycle is ⇠ 50n for n gridpoints. With the assumption of
perfect load balance, the arithmetic time is therefore

TaMG ⇠ 50(n/P )ta. (22)

Similarly, the communication complexity is

TcMG ⇠
⇣
8↵ log2(n/P ) + 30� (n/P )

2
3 + 8↵ log2 P

⌘
ta. (23)

In (23) we once again see a direct P dependence. Here, the 8↵ log2 P term comes from the communication
intensive coarse-grid solve phase of multigrid that commences with one degree of freedom per processor,
restricts down to a single active processor (idling 7/8 of the active processors after each restriction), and
prolongates back up to P active processors.

Proceeding as in the previous cases, we establish the strong-scale limit for geometric multigrid as the
point where

TcMG

TaMG
=

8↵ log2(n/P ) + 30� (n/P )
2
3 + 8↵ log2 P

50n/P
 1, (24)

For P = 106 and 109 with BG/Q parameters we find the multigrid granularity limits:

n/P � 21000, P = 106, (25)

n/P � 27000, P = 109. (26)

We remark that (26) predicts that an exascale Poisson problem would require over 27 trillion gridpoints
to realize reasonable parallel e�ciency. The large increase over conjugate gradient iteration is primarily
a result of the communication intensive coarse-grid solve. If this operation could be cast as a hardware-
supported parallel prefix operation similar to the all-reduce support on BG, we speculate that the multigrid
communication costs could be reduced to

TcMG ⇠
⇣
8↵ log2(n/P ) + 30� (n/P )

2
3 + 4 (5↵)

⌘
ta, (27)

which would lead to (n/P ) = 7500 as the fine-grained multigrid limit for P = 109. This nearly fourfold
increase in scalability would translate into a fourfold reduction in CPU time through the use of more proces-
sors (with no reduction in power). One can, in fact, cast multigrid as a sequence of prefix operations, even
in the more general case of algebraic multigrid, as was demonstrated by Bell et al.10 Identifying primitives
that can be supported by the network interface card would be a potentially productive avenue for co-design
in future-generation HPC systems.

7 of 10
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1Fischer, Heisey, Min, Scaling Limits for PDE-Based Simulation, AIAA 2015

What Makes These SEM Problems Different?



Consequences of Strong-Scaling

qSuppose wall-clock time complexity is:  twc = W/P + C = 80 + 20 seconds

qIf an improved algorithm leads to C’ = 5 seconds, it appears we have a 15 second gain. 

qNot quite...

– Users will increase P to P’ = 4P (same efficiency) to yield a runtime of

t’wc = W/4P + C’ = 25 seconds

qSame energy and node-hour consumption!
q4X Faster time to solution.



Possible Solution Strategies

qKrylov Subspace Projection (KSP): mandatory for robustness
qCG if preconditioner is SPD
qflexCG
qGMRES (if # iterations per step is small)

qMust be multilevel because of the problem scale: n = 107 – 1011

qPreconditioners:
qOverlapping Schwarz
qp-Multigrid (PMG): variety of smoothers
qFEM-SEM equivalence: sparse low-order operator, AFEM ~ ASEM 

– requires scalable AMG 



Some PMG Smoothers

qJacobi: suffers from subcell aspect ratios in d>1 space dimensions  (Ronquist’88)

qLine smoothers (Heinrichs ‘88)

qBlock-Smoothers via fast-diagonalization method (Pahl 93, Couzy 95)

qMultilevel Weighted Additive Schwarz–low cost but high iteration counts (F97,Lottes & F 05)

qChebyshev-Jacobi (Adams et al.’03, Gandham’15, Karakus et al.’19)

qChebyshev-Schwarz (Phillips’22)

On plaWorms where communicaUon costs are high, there is an advantage to 
having beYer smoothers so that the coarse-grid solve is invoked less frequently.



• Orszag (JCP 1980) pointed out that, for Poisson, sparse low-order finite difference operators were 
spectrally equivalent to their spectral counterparts on the same nodal point distribu,ons, with a 
bounded condi,on number of 

– Deville & Mund; Canuto & Quarteroni; F. et al.,Parter et al. extended this to FEM discre,za,ons.   

– More recent developments in Canuto et al. ‘10, Bello-Maldonado & F. ’19, Pazner ‘19.

• Main idea:
– Tesselate GLL points with tets – choice of tessella/on is important
– Form sparse FEM AFEM matrix
– Use a single AMG V-cycle (via hypre or other scalable op,on)

• Observa,ons:
– Low itera,on count
– Cost per itera,on is high, compared to ASM-pMG
– A winner in some cases where ASM-pMG stalls
– Requires robust & fast AMG.

⇡2/4

Another Projection Idea

• Parallel coarse-grid solver:

– needed for multigrid and multilevel Schwarz methods.

• At coarsest level, on P processors: A0x0 = b0.

– A0 2 lR
n0⇥n0, n0 ⇡ P .

– Distributed data ⇠ 1 dof per process.

– Distributed result ⇠ 1 result per process.

– All-to-all: x0 = A�1
0 b0, A�1

0 – full.

– A0 – sparse.

Robust Preconditioner:  FEM-SEM + AMG



FEM vs HSMG Convergence
• Piston with moving valve example:

– E=6784, N=7.
– CFL=4
– Significant reduction in iteration count
– FEM preconditioning:  ~60% reduction in 

solution time
– Single FEM V-Cycle with Hypre as GMRES 

preconditioner
– Timings on Mira (CPU)



Recent Schwarz Developments Malachi Phillips (UIUC)



Schwarz v. Chebyshev Jacobi
q We know that weighted overlapping Schwarz is a good 

local smoother (and, not expensive).

q The addi@ve variant puts more pressure on the coarse-
grid solve than a mul@plica@ve version with several 
rounds of smoothing at each level.

q Chebyshev-Jacobi is remarkably robust.

q A natural idea is to apply Chebyshev accelera@on to 
the Schwarz smoothing cycle.

N=7 N=3 N=1

Apn = bn

A�pn = bn � Apn�1

A�pn = bn � Ap̄n,

p̄n :=
X

j

xjx
T
j b

n, xTj Axi = �ij

xj 2 span{pn�1 . . . pn�k}
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r ]

ze = (Ss ⌦ Sr)[Is ⌦ ⇤r + ⇤s ⌦ Ir]
�1(ST

s ⌦ ST
r )Rer
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rSr = Sr⇤r, Ae

sSs = Ss⇤s,

Local Schwarz smoothing is fast via fast-diagonalization

Extended to more general operators: Pazner&Persson; 
Pablo Brubeck, …



PBR146 Results Malachi Phillips (UIUC)



Chebyshev-RAS vs. SEMFEM                                                      Phillips et al’22

For Case c, SEMFEM is a clear winner, but Cheby-ASM or Cheby-RAS are generally the productionoptions.

(a) (b)

(c)

(d)

Figure 3: Navier-Stokes cases: pebble-beds with (a) 146,
(b) 1568, and (c) 67 spheres; (d) Boeing speed bump.

number ReD = 1460. Time advancement is based
on a two-stage 2nd-order characteristics timestepper
with CFL=4 (�t = 2 ⇥ 10�3 �t = 5 ⇥ 10�4, and
�t = 5⇥ 10�5 for the 146, 1568, and 67 pebble cases).
An absolute pressure solver tolerance of 10�4 is used. A
restart at t = 10, t = 20, and t = 10.6 convective time
units is used for the 146, 1568, and 67 pebble cases,
respectively, to provide an initially turbulent flow.

The fourth case, shown in Fig. 3d, is a direct
numerical simulation (DNS) of seperated turbulent flow
over a speed bump at Re = 106. This test case was
designed by Boeing to provide a flow that exhibits
separation. A DNS of the full 3D geometry, however,
remains di�cult [26]. Therefore, this smaller example
proves a useful application for benchmarking solver
performance. This case uses a 2nd-order timestepper
with CFL=0.8 (�t = 4.5 ⇥ 10�6) and an absolute
pressure-solve tolerance of 10�5. A restart at t = 5.6
convective time units is used for the initial condition.

In all cases, solver results are collected over 2000
timesteps. At each step, the solution is projected onto
a space of up to 10 prior solution vectors to generate
a high-quality initial guess, ū. Projection is standard
practice in nekRS as it can reduce the initial residual
by orders of magnitude at the cost of just one or two

matrix-vector products in A per step [12].
The perturbation solution, �u := u � ū, is typi-

cally devoid of slowly evolving low wave-number con-
tent. Moreover, the initial residual is oftentimes su�-
ciently small that the solution converges in k < 5 it-
erations, such that the O(k2) overhead of GMRES is
small. Testing the preconditioners under these condi-
tions ensures that the conclusions drawn are relevant to
the application space.

4 Results

Here we consider the solver performance results for the
test cases of Section 3. We assign a single MPI rank to
each GPU and denote the number of ranks as P . All
runs are on Summit. Each node on Summit consists of
42 IBM Power9 CPUs and 6 NVIDIA V100 GPUs. We
use 6 GPUs per node unless P < 6. In the following, we
denote a pMG preconditioner using ⌘-order Chebyshev-
accelerated ⇠ smoother with a multigrid schedule of
⇧ as Cheby⇠(⌘),⇧. A wide range of preconditioning
strategies is considered.

4.1 Kershaw Mesh The Kershaw study comprises
six tests. For each of two studies, we consider the
regular box case (" = 1.0), a moderately skewed case
(" = 0.3), and a highly skewed case (" = 0.05). The
first study is a standard weak-scale test, where P and
E are increased, while the polynomial order is fixed at
p = 7 and the number of gridpoints per GPU is set to
n/P = 2.67M . The range of processors is P=6 to 384.
The second study is a test of the influence of polynomial
order on conditioning, with P = 24 and n/P = 2.88M
fixed, while p ranges from 3 to 10. Both cases use
GMRES(20).

The results of the weak-scaling study are shown in
Fig. 4. For all values of ", the iteration count exhibits
a dependence on problem size, as seen in Fig. 4a,d,g,
especially in the highly skewed case (" = 0.05). The
time-per-solve also increases with n, in part due to the
increase in iteration count, but also due to increased
communication overhead as P increases. This trend
is not necessarily monotonic, as shown in Fig. 4c,f.
In the case of " = 0.3 Cheby-RAS(2),(7,3,1), a minor
fluctuation in the iteration count from the P = 6 to
P = 12 case causes the greater than unity parallel
e�ciency. For " = 1.0 Cheby-Jac(2),(7,5,3,1), the
e↵ects of system noise on the P = 6 run causes the
greater than unity parallel e�ciency for the P = 12
run.

Table 3 indicates the maximum number of of neigh-
boring processors for the assembly (QQ

T ) graph of A,
which increases with P . In addition, the number of
grid points per GPU (n/P = 2.67M) is relatively low.
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Figure 7: Strong scaling results on Summit for the Navier-Stokes cases of Fig. 3a,b,c. Iso-processor count line illustrated
in (c). A user running on a specified number of processors should use the lowest time-to-solution preconditioner along this
line.

Case Name GLL Spacing (min/max) Scaled Jacobian (min/max/avg) Aspect Ratio (min/max/avg)

146 pebble 1.01⇥ 10�3 / .32 4.31⇥ 10�2 / .977 / .419 1.07 / 56.9 / 7.14
1568 pebble 2.21⇥ 10�4 / .3 2.59⇥ 10�2 / .99 / .371 1.12 / 108 / 12.6
67 pebble 4.02⇥ 10�5 / .145 5.97⇥ 10�3 / .970 / .38 1.17 / 204 / 13.2

Boeing Speed Bump 8.34⇥ 10�7 / 2.99⇥ 10�3 .996 / 1 / 0.999 6.25 / 255 / 28.1

Table 4: Mesh quality metrics for cases from Fig. 3.

Figure 8: Same as Fig. 7c, pMG preconditioners only.

bed simulation (n=51B gridpoints) through a sequence
of tuning steps. Even if there were 100 configurations in
the preconditioner parameter space, an auto-tuner could
visit each of these in succession 5 times each within the
first 500 steps and have expended only a modest incre-
ment in overhead when compared to the cost of sub-
mitting many jobs (for tuning) or to the cost of 10,000
steps for a production run.

As a preliminary step, the authors consider con-
structing a small subset of the true search space
(which could include, e.g., other cycles, schedules, or
smoothers) for use in a nascent auto-tuner. Across all
cases, with exception to the 67 pebble case, pMG pre-

conditioning with Chebyshev-accelerated ASM or RAS
smoothing is the fastest solver or is comparable to
SEMFEM. The choice of Chebyshev order and multi-
grid schedule, moreover, contributes only a modest ⇡

10-20% improvement to the overall time-to-solution in
most cases, all else being equal. This makes the de-
fault Cheby-ASM(2),(7,3,1) or Cheby-ASM(2),(9,5,1)
preconditioner reasonably performant. However, in or-
der to avoid the situation encountered in the 67 peb-
ble case, SEMFEM is added to the considered search
space. The parameters in Table 5 are chosen as they
include optimal or near-optimal preconditioner settings
for the results in Figs. 6, 7, while still restricting the
search space to something that is amenable to exhaus-
tive search. The authors note, however, that this pa-
rameter space may not reflect the various factors a↵ect-
ing the performance of the preconditioners at especially
large P or on di↵erent machine architectures.

During the first timestep, our simple auto-tuner
performs an exhaustive search over the small parameter
space identified in Table 5. While this space is lim-
ited compared to the true search space, the resultant
preconditioners selected are e↵ective. In the 146 peb-
ble case (Fig. 7a), Cheby-RAS(2),(7,3,1) is identified
as the preconditioner on each of the processor counts,
which was comparable in peformance to the best precon-
ditioner. The auto-tuner chose the optimal SEMFEM
for the 1568 pebble case (Fig. 7b). SEMFEM was iden-
tified at the preconditioner for the 67 pebble case on all
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Impact of High-Aspect-RaCo Elements

q High-aspect-ra@o elements are a con@nual source of difficulty.

Table 5: Performance of the additive Schwarz algorithm

No = 0 No = 1 No = 3 A0 = 0 No − var.

K iter CPU iter CPU iter CPU iter CPU iter CPU

93 121 10. 64 5.9 49 5.6 169 19. 45 5.4

372 203 74. 106 43. 73 39. 364 193. 75 32.

1488 303 470. 158 274. 107 242. 802 1798. 102 183.

1744 183 329 97 199. 68 180. 801 2089. 78 163.

in column 4 for the case No = 3; in the absence of a coarse grid the iteration count roughly

doubles for each successive quad-level refinement from K = 93 to 1488.

Although the results of the overlapping Schwarz scheme are impressive, the fact that

the iteration counts in the first three columns are not bounded with K is somewhat dis-

appointing. Fig. 6 shows the residual history for M−1
o E with No = 1 for K = 93, 372,

and 1488. All three curves show the same rapid initial convergence. However, after the

25th iteration, there appears to be a persistent mode which prevents the convergence from

otherwise being order-independent. This mode can be viewed by taking the difference be-

tween the 25th and final iterates, as shown in Fig. 7 for K = 1488. The mode is clearly

centered about the high-aspect ratio (HAR) subdomains and suggests that elimination of

such domains might improve convergence.

An easy way to alleviate the aspect ratio problem is to simply subdivide the HAR

subdomains along the appropriate axis. Since we are presently considering only conforming

discretizations, this implies splitting subdomains along the entire length of the domain. The

iteration – i

1488372K = 93

||ri
||

iteration – i

K = 1488
No–variable

K = 1744
No = 1

Figure 6: Residual history showing deterioration of convergence rate for K = 93 −→ 1488

(left). Convergence is improved for regularized geometry and/or variable overlap (right).
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Impact of High-Aspect-Ratio Elements                K. Mittal ‘18

q Sometimes can be repaired by mesh smoothing

Journal of Scientific Computing

smoothing iteration versus the number of processors. The plot indicates that the smoother
shows nearly linear speed-up even at the strong scale limit where there are only 10 elements
per processor.

4 Numerical Experiments

In this section, we present results obtained from mesh smoothing to show qualitative improve-
ment, and quantitative improvement in terms of pressure iterations (Niter) and the iterative
condition number (κ) of the pressure-solve system (Sect. 2.4). In all the cases, the original
and smoothed mesh were run with same parameters, such as time-step size and tolerances for
pressure and velocity solve, to ensure that the comparison obtained was not biased towards
either meshes.

4.1 Flow Past a Half-Cylinder

Figure 8 shows the mesh that was constructed for flow past a cylinder in the half-domain,
and has been used in the past for testing the performance of various preconditioners [12].
This mesh contains a spectrum of element shapes and sizes which make it effective for
testing the convergence behavior of iterative solver. For this case, the calculation was run
only for 1 time-step because the first time step is most difficult as the full spectrum of
pressure must be computed instead of just computing a perturbation from the previous step
[12]. For this case, we use three different meshes with elements of increasing aspect ratio
to demonstrate how smoothing can significantly reduce the iteration counts for the iterative
pressure solve.

In these tests, the base mesh of Es = 93 elements (Fig. 8, left) was twice quad-refined to
Es = 372 and 1488, respectively. Smoothing was applied (as shown in Fig. 8, right) to yield
improvements in condition number κiter of 76.2 , 67.9, and 72.7% for respective element
counts of Es=93, 372, and 1488. The corresponding reductions in iteration count were 43.2,
43.2, and 46.6%.

4.2 Low Pressure Turbine Blade

Figure 9 shows the mesh that was constructed for analysis on flow past the LPT-106 turbine
blade. The domain is periodic in the pitchwise direction (and streamwise direction in 3D),
which requires that the elements on those boundaries have same streamwise coordinate. This
leads to mesh skewness which manifests itself the most near the leading and trailing edge, and
is not conducive for optimized solver performance and CFL of the grid. As evident, the mesh
smoother makes the mesh homogeneous and preserves the boundary layer resolving elements

Fig. 8 Half-cylinder mesh before and after smoothing

123
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issue and makes the mesh more uniform as shown in Fig. 14c. Mesh smoothing decrease φ

by 71%. Surface smoothing is applied to the cylinders base and circular walls to improve
the quality of CFL constraining elements. We note here that this is calculation is an ALE
application where the base of the intake valve and cylinder moved based on the relation
between the crank angle and the piston height for a full operating-cycle of an engine.

As shown in Fig. 1, the weighted function is used at the end of smoothing iterations to
restore the boundary layer resolution of the original mesh. Mesh smoothing decreases κiter
for the upper Hessenberg matrix by 39.8% and decrease the pressure iteration count by 15%

5 Conclusion and FutureWork

Table 1 summarizes the results from tests discussed in the previous section. For each case, we
present the improvement in iterative condition number (#κ), number of pressure iterations
per time-step (#N ), and the overall run-time (#T ) of the calculation. Mesh smoothing
improves the interative condition number of the calculation, which leads to a decrease in the
number of pressure iterations. Consequently we also see a decrease in the overall run-time
of the calculation (which includes both, the pressure-solve and the velocity-solve step, of the
Navier–Stokes solver). Additionally, mesh-smoothing also increases the maximum allowable
time-step size for marching the Navier–Stokes equations. Thus, mesh smoothing can lead to
significant savings in terms of cpu-hours.

A comparison of the iterative condition number (κiter = λmax
λmin

) via the upper Hessenberg
matrix constructed during GMRES iterations of pressure solve has helped us establish a strong
correlation between κiter and Niter . For the eight cases presented in the preceding section, we
saw that Niter decreases with κiter . This result is significant because it opens doors to better
mesh optimization strategies. In future work, we aim to exploit this correlation between
conditioning of the upper Hessenberg matrix and pressure iterations to improve our mesh
optimizer. Instead of just using the conditioning of the Jacobian matrix for mesh smoothing,
we will investigate ways to include κiter in global function used for mesh optimization to
ensure that every step taken during mesh smoothing improves the conditioning of the system
and hence results in decreasing the iteration count for pressure solve.

Table 1 Comparison of number of iterations (N ), iterative condition number (κ) and overall run-time (T ) for
original and smoothed meshes with the number of spectral elements (Es ) for each case

Case Es Norig Nsmooth #N% κorig κsmooth #κ% #T %

Half-cylinder 93 44 25 43.2 35.1 8.4 76.2 20.9

Half-cylinder 372 37 21 43.2 64.1 20.6 67.9 25.4

Half-cylinder 1488 73 39 46.6 115.5 31.5 72.7 33.3

LPT 532 6.4 5.6 12.9 110.7 87 21.2 6.3

Cylinder 1472 7.1 5.3 21.2 9.3 3.7 60.3 8.7

Oscillating flow 83598 21.3 20.4 3.9 1094.8 1014.3 7.4 2.2

Hemi-sphere 2072 4.19 3.9 6.8 14.6 12.1 17.2 1.5

Piston cylinder 6784 22.7 19.3 15.0 97.5 58.7 39.8 8.3
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Cases cyl146 cyl1568 ann3344 cyl11k cyl49k ann127k ann350k
IO for Qhull 4.56E-01 1.10E+00 2.64E+00 6.36E+00 1.97E+01 5.13E+01 2.79E+02
Voronoi cells (Qhull) 1.70E-01 4.29E-01 1.07E+00 2.50E+00 8.77E+00 2.12E+01 7.98E+01
Facet generation 9.37E-01 6.79E+00 1.50E+01 5.71E+01 4.69E+02 3.41E+03 4.70E+04
Edge collapse 8.67E-02 2.34E-01 4.53E-01 1.26E+00 5.24E+00 1.30E+01 8.20E+01
Facet/edge clean-up 1.21E+00 6.57E+00 8.66E+00 2.75E+01 1.29E+02 3.47E+02 2.55E+03
Tessellation 2.37E+00 1.40E+01 2.78E+01 9.62E+01 7.30E+02 4.09E+03 2.62E+04
All-quad generation 1.67E-01 7.02E-01 1.34E+00 4.24E+00 1.74E+01 4.61E+01 1.20E+02
All-quad to all-hex 5.64E-02 2.48E-01 5.13E-01 2.42E+00 9.34E+00 2.52E+01 7.97E+01
Extrusion 1 4.99E-01 3.58E+00 8.60E+00 2.11E+01 8.58E+01 3.10E+02 1.63E+03
IO for smoothing 2.42E-01 4.99E+00 4.13E+00 1.30E+01 5.85E+01 1.96E+02 1.12E+03
Mesh smoothing (42 ranks) (42 ranks) (42 ranks) (84 ranks) (168 ranks) (336 ranks) (1008 ranks)

3.58E+00 4.12E+01 9.95E+01 3.99E+02 7.26E+02 3.19E+03 1.10E+03
Extrusion 2 1.01E+00 5.36E+00 1.08E+01 2.80E+01 1.10E+02 6.72E+02 2.12E+03
IO for projection 1.55E-01 7.71E-01 1.62E+00 5.13E+00 2.19E+01 1.62E+02 4.16E+02
Curve-side projection (42 ranks) (42 ranks) (42 ranks) (84 ranks) (168 ranks) (336 ranks) (25200 ranks)

4.00E+01 2.10E+02 1.80E+03 1.68E+03 4.20E+03 3.60E+03 7.20E+03
Total 6.71E+01 3.41E+02 2.05E+03 2.55E+03 7.51E+03 1.89E+04 1.88E+05

Table 2: Breakdown of meshing times (seconds, unless otherwise indicated). Most functions are running with serial
Matlab. The mesh smoothing and projection are running on OLCF/Summit’s CPU nodes, which introduce some I/O
time. Remarks: The ann350k case ran twice for the edge collapse tolerance adjustment, so the total time is much
higher. Projection for the ann350k case is done on the N=7 grid (512 points) while others are on N=2 (27 points).

Figure 8: Turbulent flow in an annular packed bed with N = 352625 spheres meshed with E = 98, 782, 067 spectral
elements of order N = 8 (n = 50 billion gridpoints). This NekRS simulation requires 0.233 seconds per step using
27648 V100s on Summit. The average number of pressure iterations per step is 6.

elements and n = 50.5 billion grid points.

Overall, the development has satisfied the objective of
allowing us to produce large-scale high-quality meshes
suitable for high-order spectral element simulations of
turbulence in packed beds. In particular, the 352K
case, which corresponds to a full reactor core, takes
only .233 seconds per step when running on 4608 nodes

(27648 V100s), which corresponds to 1.8 million points
per V100. This configuration would require only 6
hours to compute a single flow-through time on all
of Summit, implying that parameter studies will be
readily tractable on exascale platforms. The number of
pressure iterations is ⇡6 per step when using a tuned
version of the NekRS multigrid solver. Tuning was

Y. Lan, P. Fischer, E. Merzari, M. Min: All hex meshing strategies for densely-packed spheres. Int. Meshing Roundtable, 2021.

Extreme Scalability:  352,000-Pebble Bed – 27648 V100s
Y.Lan, M.Min, E. Merzari

NekRS Timing Breakdown: n=51B, 2000 Steps
pre-tuning post-tuning

Operation time (s) % time (s) %
computation 1.19+03 100 5.47+02 100
advection 5.82+01 5 4.49+01 8
viscous update 5.38+01 5 5.98+01 11
pressure solve 1.08+03 90 4.39+02 80

precond. 9.29+02 78 3.67+02 67
coarse grid 5.40+02 45 6.04+01 11

projection 6.78+00 1 1.21+01 2
dotp 4.92+01 4 1.92+01 4

Table 1: Default NekRS statistics output, provided every 500
timesteps for each run, each user. This table shows results for the
352K pebble geometry of Fig. 1 on P=27648 V100s on Summit.

every 500 time steps unless the user specifies other-
wise. Timing breakdowns roughly follow the phys-
ical substeps of advection, pressure, and viscous-
update, plus tracking of known communication bot-
tlenecks. Table 1 illustrates the standard output and
how it is used in guiding performance optimization.
We see a pre-tuning case that used default settings
(which might be most appropriate for smaller runs).
This case, which corresponds to 352K-pebble case
(E=98M, N=8) on all of Summit indicates that 45%
of the time is spent in the coarse-grid solveand that
the pressure solve constitutes 90% of the overall so-
lution time. Armed with this information and an
understanding of multigrid, it is clear that a rea-
sonable mitigation strategy is to increase the effec-
tivenes of the smoothers at the higher levels of the
pMG V-cycles. As discussed in Sec. 7, this indeed
was a first step in optimization—we switched from
Chebyshev-Jacobi to Chebyshev-Schwarz with 2 pre-
and post-smoothings, and switched the level sched-
ule from N = 8, 5, 1 to N = 8, 6, 4, 1, where N = 1
corresponds to the coarse grid, which is solved us-
ing Hypre on the CPUs. Additionally, we see in the
pre-tuning column that projecting the pressure onto
L = 8 previous-timestep solutions accounted for
< 1 s of the compute time, meaning that we could
readily boost dimension of the approximation space,
R(PL ) to L = 30. With these and other optimiza-
tions, detailed in the next section, the solution time
is reduced by a factor of two, as seen in the post-

tuning column. In particular, we see that the coarse-
grid solve, which is a perennial worry when strong-
scaling (its cost must scale at least as log P , rather
than 1/P [25, 32]), is reduced to a tolerable 11%.

For GPU performance analysis, we use NVIDIA’s
profiling tools. Table 2 summarizes the kernel-level
metrics for the critical kernels, which are identified
with NVIDIA’s Nsight Systems and listed in Table
3. The principal kernels are consistent with those
noted in Table 1, namely, the pMG smoother and the
characteristics-based advection update. The kernel-
level metrics (SOL DRAM, SOL L1/TEX Cache, SM
utilization) of Table 2 were obtained with NVIDIA’s

NVIDIA® NsightTM Compute Profiling
NekRS Timing BreakDown: n=51B, 2000 Steps

27,648 GPUs, n/P = 1.8M , E /P = 3573, N = 8, Nq = 11
kernel time SD SL SM PL RL TF

[µs ] [%] [%] [%] [%]
p MG8 FP32
Ax 144 74 59 53 G 80 2.34
gs 47 64 55 - G 70 -
fdm 171 54 86 72 S 98 3.90
gsext 68 74 36 - G 80 -
fdmapply 83 77 26 - G 84 -
p MG6 FP32
Ax 66 75 59 50 G 82 1.87
gs 28 50 56 - L 64 -
fdm 81 40 86 24 S 98 3.12
gsext 35 64 56 - L 70 -
fdmapply 40 72 42 - G 78 -
p MG4 FP32
Ax 29 65 47 34 G 71 1.25
gs 16 29 50 - L 57 -
fdm 49 45 76 60 S 86 2.18
gsext 21 64 56 - L 70 -
fdmapply 21 67 44 - G 73 -
CHAR FP64
adv 1250 60 63 36 S 72 2.50
RK 250 84 - - G 91 -
gs 88 68 36 - G 74 -

Table 2: Kernel analysis for 352K pebbles simulations on Sum-
mit at full-system scale. SD:= SOL DRAM, SL:= SOL L1, SM:=
SM Utilizaion, PL:= Performance Limiter, RL:= Roofline Perfor-
mance, TF:= TFLOPS. [·] is unit and ‘-’ represents n/a. pMG8,
pMG6, pMG4, represent the kernels for p multigrid with smooth-
ing for the degrees of polynomials 8,6,4, respectively. gs:= All
Other Near-Neighbor Updates (26 msgs per element), gsext:=
Overlapping Schwarz Exchange (6 mgs per element), fdm:= Fast
Diagonalization Method, Eq. (3), and fdmapply:=Update the so-
lution with contributions from overlap. n/P : number of grid
points per GPU, E /P : number of elements per GPU, N : polyno-
mial order, and Nq : number of quadrature points for advection
operator.

Nsight compute profiler. They indicate that the lead-
ing performance limiter (LPL) of most kernels is the
globlal memory bandwidth but in some cases the
shared memory utilization is also significant. How-
ever two kernels are clearly shared memory band-
width bound. All kernels achieve a near roofline
performance (RL) defined as >70% maximum re-
alizable LPL utilization (e.g. triad-STREAM pro-
duces 92% of GMEM) except the latency bound
gather-scatter kernels in the coarse pMG levels.

7. Performance Results

17⇥17 Rod Bundle. We begin with strong- and
weak-scaling studies of a 17⇥17 pin bundle of the
type illustrated in Fig. 1 (far right). The mesh com-
prises 27700 elements in the x -y plane and is ex-
truded in the axial (z ) direction. Any number of
layers can be chosen in z in order to have a consis-
tent weak-scale study. In this study, we do not use
characteristics-based timestepping, but instead use
a more conventional semi-implicit scheme that re-
quires CFLÆ 0.5 because of the explicit treatment of

6

Pre-tuning timing breakdown: .597 s/step

Q: How to control coarse grid costs without control over the coarse grid solver?

(NB: “coarse” grid = 100M unknowns…)



Issues that make the coarse-grid solve challenging

qCommunication intensive -
qsmall amount of work per rank
qall-to-all communication 

(Green’s functions cover entire 
domain)

qToo little work to keep GPU happy
qkernel launch overhead

qSystem noise (network/node)

10% performance drop



Issues that make the coarse-grid solve challenging

q Kernel launch overhead - Jean-Sylvain Camier (CEED MS37)  
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Figure 1: MFEM results for the CEED BP1 benchmark on a single NVIDIA
Volta V100 SXM2 GPU on Lassen using the deterministic (a) and fast non-
deterministic (b) kernels.
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(b) fast non-deterministic kernels

Figure 2: MFEM results for the CEED BP3 benchmark on a single NVIDIA
Volta V100 SXM2 GPU on Lassen using the deterministic (a) and fast non-
deterministic (b) kernels.

For CEED applications, the rate of work is measured in billions-DOFs-per-second (GDOF/s, or gigadofs).
Two of the principal metrics of interest are the peak rate of work per unit resource (rmax) and the local
problem size on the node required to realize 80% percent of the peak rate of work per unit resource (N0.8).
As explained in [4], users are typically interested in reduced time-to-solution by increasing the number of
nodes until parallel e�ciency reaches an intolerable level (about 80%). Improving the N0.8 directly allows
to reduce the time-to-solution: the smaller the value of N0.8, the more processors that can be used and the

Exascale Computing Project (ECP) 2 CEED-MS37
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(a) Reduced N0.8 with XFL kernels
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(b) XFL vs fast kernels

Figure 4: Reduced N0.8 obtained with the XFL (a) and XFL vs fast (b) kernels
on CEED BP1 benchmark on a single NVIDIA V100 SXM2 GPU on Lassen.
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(a) Reduced N0.8 with XFL kernels
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Figure 5: Reduced N0.8 obtained with the XFL (a) and XFL vs fast (b) kernels
on CEED BP3 benchmark on a single NVIDIA V100 SXM2 GPU on Lassen.

solver Development for molten salt reactors.

NEAMS Full-Core Pebble-Bed Performance Optimization. The main target of our NEAMS study
is the full core for the pebble bed reactor (Figure 8, left), which has 352,625 spherical pebbles and a
fluid mesh comprising E = 98, 782, 067 elements of order N = 8 (n ⇡ 51B). In this case, we consider the
characteristics-based timestepping with �t = 4.e-4 or 8.e-4, corresponding to respective Courant numbers of
CFL ⇡ 2 and 4. Table 1 lists the battery of tests considered for this problem, starting with the single-sweep
Chebyshev-Additive Schwarz (1-Cheb-ASM) pMG smoother, which is the default choice for smaller (easier)

Exascale Computing Project (ECP) 4 CEED-MS37
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Number of rows and nonzeros in AMG    
(E=580,000)

• Key observa@ons: 
– ndofs < P à idle some processors. OK.

– Number of nonzeros does not drop as rapidly 
as number of rows

– Stencil width grows at lower levels 

à 100s of nonzeros per row

à More messages per processor

à Alterna@ve message exchange 
strategy at lower levels.

à Rewrite gs()

3 exchange strategies:

pairwise, all_reduce, crystal-router [Fox et al.,88]

Level ndofs nnz
0 665820
1 304403   15668640.
2 204979   20863046.
3  96379  11293784.
4  38094    5095546.
5  16123    2051300.
6   4754     459490.
7    927      25760.
8    138 506.
9     18 20.



gs() times – P=131K
• Red – pairwise,  green – cr(), blue – all_reduce
• Horizontal axis – number of nontrivial (shared) columns in matrix
• cr() and all_reduce > 5-10 X faster in many cases



Coarse-Grid Solve times on Mira
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Controlling Coarse-Grid Solve Costs – 352K pebble case
qReduce the number of times we visit the bottom of the V-cycle, i.e., the number of iterations

qProjection onto previous timesteps

qGMRES instead of Flexible CG

qMore smoothing on the fine levels

qNote that, based on previous work, we know that we are at or a bit below the strong-scale 
limit: 50.5B points / 27648 = 1.83 M points per GPU

Compute Profiling GPU Time Breakdown (43% of Run Time)
27,648 GPUs, n/P = 1.8M , E /P = 3573, N = 8, Nq = 11

time [%] total time instances average min max name
11.8 37455851267 63984 585394 530748 688475 _occa_nrsSubCycleStrongCubatureVolumeHex3D_0
11.2 35299998642 1003791 35166.7 8704 76128 _occa_gatherScatterMany_floatAdd_0

9.5 29998225559 523524 57300.6 24223 112223 _occa_fusedFDM_0
8.2 25841854995 523713 49343.5 16320 163294 _occa_ellipticPartialAxHex3D_0
6.5 20589069440 812325 25345.9 5696 79296 _occa_scaledAdd_0
6.3 20084031405 159758 125715.3 8672 338654 _occa_gatherScatterMany_doubleAdd_0
4.1 12813250728 1003791 12764.9 5823 25504 _occa_unpackBuf_floatAdd_0
4.0 12785871394 261762 48845.4 20992 83487 _occa_postFDM_0
3.8 12026221342 1003791 11980.8 6016 30688 _occa_packBuf_floatAdd_0
3.0 9498908211 31992 296915.1 234334 486589 _occa_nrsSubCycleERKUpdate_0

Table 3: GPU time breakdown

the nonlinear advection term. The initial condition
is a weakly chaotic vortical flow superimposed on
a mean axial flow and timings are measured over
steps 100–200. Table 4(top) presents strong scale re-
sults on Summit for a case with E = 175M and N = 7
(n=60B) for n/P ranging from 5.5M down to 2.1M.
We see that 80% efficiency is realized at n/P ⇡ 2.5M.
The weak-scale study, taken at a challenging value
of n/P = 2.1M, shows that our solvers sustain up to
83% (weak-scale) parallel efficiency out to the full
machine.

We measured the average wall time per step in
seconds, ts t e p , using 101-200 steps for simulations
with R eD = 5000. The approximation order is N = 7,
and dealiasing is used with Nq = 9. We use pro-
jection in time, CHEBY+ASM, and flexible PCG for
the pressure solves with tolerance 1.e-04. The ve-
locity solves use Jacobi-PCG with tolerance 1.e-06.
BDF3+EXT3 is used for timestepping with�t= 3.0e-
04, corresponding to CFL=0.54. The pressure itera-
tion counts, pi ⇠ 2, are lower for these cases than for
the pebble cases, which have pi ⇠ 8 for the same

NekRS Strong Scale: Rod-Bundle, 200 Steps
Node GPU E n n/P tstep[s ] Eff
1810 10860 175M 60B 5.5M 1.85e-01 100
2536 15216 175M 60B 3.9M 1.51e-01 87
3620 21720 175M 60B 2.7M 1.12e-01 82
4180 25080 175M 60B 2.4M 1.12e-01 71
4608 27648 175M 60B 2.1M 1.03e-01 70

NekRS Weak Scale: Rod-Bundle, 200 Steps
Node GPU E n n/P tstep[s ] Eff

87 522 3M 1.1B 2.1M 8.57e-02 100
320 1920 12M 4.1B 2.1M 8.67e-02 99
800 4800 30M 10B 2.1M 9.11e-02 94

1600 9600 60M 20B 2.1M 9.33e-02 92
3200 19200 121M 41B 2.1M 9.71e-02 88
4608 27648 175M 60B 2.1M 1.03e-01 83

Table 4: NekRS strong and weak scaling for rod bundle simu-
lations. n/P : number of grid points per gpu, E /P : number of
elements per gpu, tstep: average wall time for 101–200 steps, and
Eff: efficiency. BDF3+EXT3 is used for timestepping with�t =
3e-4, corresponding to CFL=0.54.

timestepper and preconditioner. The geometric
complexity of the rod bundles is relatively mild com-
pared to the pebble beds. Moreover, the synthetic
initial condition does not quickly transition to full
turbulence. We expect more pressure iterations in
the rod case (e.g., pi ⇠ 4–8) once turbulent flow is
established.
Pebble Bed–Full Core. The main target of our study
is the full core for the pebble bed reactor (Fig. 1,
center), which has 352,625 spherical pebbles and a
fluid mesh comprising E = 98782067 elements of
order N = 8 (n ⇡ 51B). In this case, we consider the
characteristics-based timestepping with�t = 4.e-4
or 8.e-4, corresponding to respective Courant num-
bers of C F L ⇡ 2 and 4. Table 5 lists the battery of
tests considered for this problem, starting with the
single-sweep Chebyshev-Additive Schwarz (1-Cheb-
ASM) pMG smoother, which is the default choice
for smaller (easier) problems. As noted in the pre-
ceding section, this choice and the two-smoothings
Chebyshev-Jacobi (2-Cheb-Jac) option yield very
high coarse-grid solve costs because of the relative
frequency in which the full V-cycle must be executed.
Analysis of the standard NekRS output suggested
that more smoothings at the finer levels would al-
leviate the communication burden incurred by the
coarse-grid solves. We remark that, on smaller sys-
tems, where the coarse-grid solves are less onerous,
one might choose a different optimization strategy.

The first step in optimization was thus to increase
the number of smoothings (2-Cheb-ASM) and to
increase the number of pMG levels to four, with
N=8, 6, 4, 1 (where 1 is the coarse grid). These steps
yielded a 1.6⇥ speed-up over the starting point. Sub-
sequently, we boosted, L , the number of prior so-
lutions to use as an approximation space for the
projection scheme from 8 to 30, which yielded an
additional factor of 1.7, as indicated in Fig. 3.

Given the success of projection and additional
smoothing, which lowered the FlexCG iteration
counts to <6, it seemed clear that GMRES would
be viable. A downside of GMRES is that the memory
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Controlling Coarse-Grid Solve Costs – 352K pebble case
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Major Algorithmic Variations, 352K Pebbles, P=27648
Case Solver Smoother L Nq �t vi pi tstep

(a) FlexCG 1-Cheb-ASM:851 8 13 4e-4 3.6 22.8 .68
(b) FlexCG 2-Cheb-Jac:851 8 13 4e-4 3.6 17.5 .557
(c) " 2-Cheb-ASM:851 8 13 4e-4 3.6 12.8 .468
(d.8) " 2-Cheb-ASM:8641 8 13 4e-4 3.6 9.1 .426
(d.L) " 2-Cheb-ASM:8641 0–30 13 4e-4 3.6 5.6 .299
(e) GMRES " 30 13 4e-4 3.5 4.6 .240
(f) " " 30 11 8e-4 5.7 7.2 .376
(g) " " 30 11 8e-4 5.7 7.2 .361 (no I/O)

Table 5: Progression of algorithmic trials. See Fig. 3 for Cases (d.L), L=0:30.

NekRS Strong Scale: 352K pebbles, E=98M, n=50B
N = 8, Nq = 13,�t = 4.e-4, L = 8, 1-Cheb-Jac:851

Node GPU n/P vi pi tstep Eff
1536 9216 5.4M 3.6 17.3 .97 1.00
2304 13824 3.6M 3.6 18.0 .84 76.9
3072 18432 2.7M 3.6 16.6 .75 64.6
3840 23040 2.1M 3.6 19.6 .67 57.9
4608 27648 1.8M 3.6 17.5 .55 58.7

N = 8, Nq = 13,�t = 4.e-4, L = 8, 1-Cheb-ASM:851
Node GPU n/P vi pi tstep Eff
1536 9216 5.4M 3.6 11.6 .81 100
2304 13824 3.6M 3.6 12.3 .65 83.0
3072 18432 2.7M 3.6 12.3 .71 57.0
3840 23040 2.1M 3.6 13.5 .54 60.0
4608 27648 1.8M 3.6 12.8 .46 58.6

N = 8, Nq = 11,�t = 8.e-4, L = 30, 2-Cheb-ASM:8641
Node GPU n/P vi pi tstep Eff
1536 9216 5.4M - - - -
2304 13824 3.6M 5.7 7.2 .55 100
3072 18432 2.7M 5.7 7.2 .56 73.6
3840 23040 2.1M 5.7 7.2 .39 84.6
4608 27648 1.8M 5.7 7.2 .36 76.3

Table 6: NekRS Strong Scale using BDF2 with characteristic.
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[10] K. Świrydowicz, N. Chalmers, A. Karakus, T. Warburton, Ac-
celeration of tensor-product operations for high-order finite
element methods, Int. J. of High Performance Comput. App.
33 (4) (2019) 735–757.

[11] A. Karakus, N. Chalmers, K. Świrydowicz, T. Warburton, A
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footprint scales as K , the maximum number of iter-
ations and the work (and potentially, communica-
tion) scales as K

2. With K bounded by 6, these com-
plexities are not onerous and one need not worry
about losing the projective property of GMRES by
having to use a restarted variant. Moreover, with so
few vectors, the potential of losing orthogonality of
the Arnoldi vectors is diminished, which means that
classical Gram-Schmidt can be used and one thus
has only a single all-reduce of a vector of length< K

in the orthogonalization step.
The next optimizations were focused on the ad-

vection term. First, we reduced the number of
quadrature points from Nq = 13 to 11 (in each direc-
tion). Elevated quadrature is necessary for stability,
but not for accuracy. While one can prove stability
for Nq � 3N /2 [30], it is not mandatory and, when
using the characteristics method, which visits the
advection operator at least four times per timestep,
it can pay to reduce Nq as long as the flow remains
stable. Second, we increased �t by a factor of 2,
which requires 2 subcycles to advance the hyper-
bolic advection operator (i.e., doubling its cost), but
does not double the number of velocity and pressure
iterations. Case (f) in Table 5 shows that the effec-
tive cost (based on the original �t ) is tstep = 0.188
s. In case (g) we arrive almost at tstep = 0.18 s by
turning off all I/O to stdout for all timesteps modulo
1000. The net gain is a factor of 3.8 over the starting
(default) point.
Pebble Bed Strong-Scale. Table 6 shows three
strong scale studies for the pebble bed at different
levels of optimization, with the final one correspond-
ing to Case (f) of Table 5. The limited memory on the
GPUs means that we can only scale from P = 9216
to 27648 for these cases and in fact cannot support
L = 30 at P = 9216, which is why that value is absent
from the table.

As noted earlier, a fair comparison for the last
set of entries would be to run the P = 9216 case
with a smaller value of L—it would perform worse,
which would give a scaling advantage to the L = 30
case. This advantage is legimate, because L = 30
is an improved algorithm over (say) L = 8, which
leverages the increase memory resources that come
with increasing P .

8. Implications

Reactor Design and Analysis. The simulations of
full nuclear reactor cores described here are ush-
ering in a new era for the thermal-fluids and cou-
pled analysis of nuclear systems. The possibility of
simulating such systems in all their size and com-
plexity was unthinkable until recently. In fact, the
simulations are already being used to benchmark
and improve predictions obtained with traditional

Figure 3: Average time-per-step and pressure iteration count
with projection-in-time as a function of number of saved vectors,
Lmax.

methods such as porous media models. This is im-
portant because models currently in use were not
developed to predict well the change in resistance
that occurs in the cross section due to the restruc-
turing of the pebbles in the near wall region. This
is a well known gap hindering the deployment of
this class of reactors. Beyond pebble beds, the fact
that such geometry can be addressed with such low
time-to-solution will enable a broad range of opti-
mizations and reductions in uncertainty in model-
ing that were until now not achievable in nuclear
engineering. The impact will extend to all advanced
nuclear reactor design with the ultimate result of
improving their economic performance. This will in
turn serve broadly the goal of reaching a carbon-free
economy within the next few decades.
HPC, Algorithms, and CFD. The study presented
here demonstrates the continued importance of nu-
merical algorithms in realizing HPC performance,
with up to a four-fold reduction in solution times
realized by careful choices among an excellent and
viable set of options. This optimization was realized
in relatively short time (a matter of days) by having
a suite of solution algorithms and implementations
available in NekRS—no single strategy is always a
winner. For users, who often have a singular interest,
being able to deliver best-in-class performance can
make all the difference in productivity. In Nek5000
and NekRS, we support automated tuning of com-
munication strategies that adapt to the network and
underlying topology of the particular graph that is
invoked at runtime. This approach has proven to
make up to a factor of 4 difference, for example, in
AMG implementations of the coarse-grid solver. Fi-
nally, the performance gains of this study will be
leveraged over future awards for computer time by
at least a subset of the 500+ user community that is
using Nek5000/RS.
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Controlling Coarse-Grid Solve Costs – 352K pebble case
qSummary:

qProjection / GMRES quite important
qMore smoothing is better at scale, to take pressure off coarse grid solve

qI/O rates:  output snapshots (32bit) ~ 4TB , 40 seconds per output (100X step time).

qBottom line:

qTotal flow-through time for full core is only 6 hours of wall-clock time on Summit!



Highly-Tuned Solver Kernels 

q NekRS picks the opLmal kernel at runLme, for each pMG order (e.g., N=7, 5, 3)

Ax: N=7 FP64 GB/s= 997.573 GFLOPS= 1730.2 kernel=4
Ax: N=7 FP64 GB/s= 997.311 GFLOPS= 1729.7 kernel=4
Ax: N=7 FP32 GB/s= 1010.990 GFLOPS= 3506.9 kernel=2

Ax: N=3 FP64 GB/s= 691.006 GFLOPS= 680.2 kernel=0
Ax: N=3 FP32 GB/s= 696.434 GFLOPS= 1371.1 kernel=1

fdm: N=9 FP32 GB/s= 601.657 GFLOPS= 5515.2 kernel=3
fdm: N=5 FP32 GB/s= 670.688 GFLOPS= 3497.2 kernel=2

From NekRS logfile:

Tuning Results for FP32 Fast-Diagonalization-Method: T. Warburton
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ExaSMR: Performance on Crusher (vs. A100, V100) M. Min, Y. Lan ANL 

Node                      Ranks                       n/rank                    tstep eff Node                      Ranks                       n/rank                    tstep eff Node                      Ranks                       n/rank                    tstep eff Node                      Ranks                       n/rank                    tstep eff 

Crusher, n0.8 = 4 M Perlmutter, n0.8 = 2.9 M ThetaGPU, n0.8 = 6.7 M Summit, n0.8 = 1.92 M

ThetaGPU:  0.91 TFLOPs/GPU, aggregate
Crusher:      0.64 TFLOPs
Summit:      0.48 TFLOPs



q Consider this hero calculation 
from a few years ago.

Answering a Common Question:   How long will my job take?

Philipp Schlatter ETC-16 Stockholm, August 2017

43

Direct numerical simulation of flow over a 
full NACA4412 wing at Rec = 400 000

 DNS with Nek5000 
 Re=400, Re=2800

 AoA=5 deg.

 zL=10% chord 

Transition to  
turbulence

Turbulence
on the wing

Flow separation
Wake turbulence

• 3.2 billion grid points
• 35  million CPU hours needed

for convergence of turbulence
• 75 TB data, 12 ETT

q How many A100s?

qHow many A100 hours?

qHow many node hours?

q 1000 A100s
qEach ~300X a CPU
q110K GPU hours
q110 wall clock hours



qOverview of scaling issues for Navier-Stokes

qUsers are most likely to operate around 80% efficiency (give or take…)

qSeveral preconditioners

qImportance of the coarse-grid solve (e.g., modify solution approach)

qThe new machines are in fact delivering about 3X performance at the strong-scale limit:
qNew preconditioners (Cheby-RAS/ASM)
qHighly-tuned OCCA kernels
qOverlapped communication/computation
qMixed-precision preconditioners
qOn-the-fly tuning, everywhere.

Thank you for your attention!

Conclusions







Fischer, Min, Tomboulides -- Argonne National Laboratory 60

• Independent NS solves on distinct MPI communicators
• prototype GPU port by Neil Lindquist & Misun Min

• production version in NekRS V22.1

• Requires  scalable general interpolation, findpts() [Lottes 2010]

• Extremely useful for 
• domains with relative twist 
• domains where two or more complex mesh topologies 

meet
• domains with rapid variation in resolution requirements
• rotating machinery
• etc.

Schwarz-Based Nonconforming Methods Y. Peet ’12, ‘16, K. Mijal’19, Lindquist & Min ‘21

CHAPTER 1. INTRODUCTION

Figure 1.1: Velocity magnitude contours for flow over a bar twisted in the streamwise direction.

To illustrate some of the challenges in generating computational meshes for three-dimensional domains,193

we consider the deceptively simple geometry of Fig. 1.1, which shows a twisted ribbon of a rectangular194

cross-section in the interior of a square duct. If one simply had a square duct or just a twisted ribbon in195

isolation, it would be possible to generate a 3D mesh for these components by building a corresponding 2D196

mesh and extruding (and twisting, in the case of the ribbon) the 2D mesh. The presence of the sharp corners197

on each of the components (the ribbon and the duct), however, prevents the use of such a straightforward198

approach.199

The essential di�culty with the extrusion approach is obvious when we consider a two-dimensional time200

analogy. Consider a 2D domain in which a rectangular rotor is turning within a square domain, as illustrated201

in Fig. 1.2. If we discretize the fluid (color) region with an arbitrary Lagrangian-Eulerian (ALE) formulation202

in which the mesh is allowed to deform, we can support only a small amount of rotation before the mesh203

becomes entangled or is torn apart. Because of the corners, some set of the mesh vertices are pinned to the204

duct walls, while others are pinned to the rotor. As the rotor spins, the edge graphs that connect the rotor205

to the wall must get longer and longer, leading to mesh entanglement.206

The most common approach to meshing rotating machinery parts such as the toy 2D rotor of Fig. 1.2(a)207

is to use rotating meshes with nonconforming interfaces, as illustrated by Fig. 1.2(b). Here, we show a pair of208

overlapping meshes in which the outer mesh has a circular cut-out to guarantee that it will not intersect the209

rotor at any angle. An alternative approach is to have a pair of meshes that share a sliding circular interface,210

i.e., in d space dimensions, they have an interface of dimension d � 1 that precisely matches each mesh in211

shape, but not necessarily in the number of mesh elements. The overlapping approach, which we pursue in212

this thesis, allows more flexibility in defining the individual meshes because the shared boundaries of the213

subdomains (here illustrated in red and black) have only minimal requirements concerning the clearance of214
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Interesting Chebyshev Smoother James Lottes (Google)

James Lottes, Optimal Polynomial Smoothers for Multigrid V-cycles, ArXiv, 2022.
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For HPC (exascale) systems, both MDOFS and n0.8 are important

q On GPUs, can obviously realize high MDOFS (with significant effort)

q Low n0.8 is more challenging — even on one GPU!

q In NekRS (and CEED in general), seek ways to reduce (n0.8 / MDOFS) algorithmically and through vendor 
interactions (ECP co-design).

1

expected from the roofline analysis—the performance of
BK5 is bandwidth limited even for the largest values of p
considered. The lower-bound plateaus in Figure 17(c) are
readily understood. At the smaller values of n local , the
number of elements is less than 80, which is the number
of streaming multiprocessors (SMs, individual compute
units) on the V100. Element counts below this value con-
stitute situations in which SMs are idled and the time per
iteration is consequently not reduced.

Further insight into the ðp;E;PÞ performance trade-offs
can be gained by looking at the execution time per point,
shown in Figure 17(d), which also shows the minimal time
and the 2# line, which is twice the minimal execution time
per point. For a fixed total problem size, n, moving hori-
zontally on this plot corresponds to increasing P and reduc-
ing nlocal such that n ¼ nlocalP. In the absence of
communication overhead, one gains a full P-fold reduction
in the execution if the time per point does not increase
when moving to the left. We see in this plot that p ¼ 7
appears to offer the best potential for high performance,
where even at nlocal ¼30,000 the execution time per point

is within a small multiple of the minimum realized over all
cases. This low value of n local is in sharp contrast with the
p ¼ 14 and 15 cases, which cross the 2# line at
nlocal ¼200,000. Thus, through additional internode paral-
lelism, the p ¼ 7 case affords a potential 200/30 %7-fold
performance gain over the larger p cases. Of course, this
analysis must be tempered by consideration of a full solver
that includes communication, particularly for Poisson prob-
lems, which require communication-intensive multilevel
solvers for algorithmic efficiency. In the next section, we
take a step in that direction by analyzing the BP5 perfor-
mance on Summit.

8.2. BP5 on Summit

The BP5 implementation on the V100s employs the opti-
mally performing BK5 kernel of the preceding section. All
vectors are stored in their local form, following the
Nek5000 storage approach described in Appendix 1A. The
vector operations for PCG, including the diagonal precon-
ditioner, are straightforward streaming operations with a

(a) BK5 Tuning (b) BK5 Tflops

(c) BK5 Timings (d) BK5 Timings per point

Figure 17. Single GPU performance: (a) TFLOPS for different kernel tunings. (b) TFLOPS versus problem size n for different
polynomial orders, p. (c) Execution time versus n for varying p. (d) Execution time per point versus number of points, n.
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GPU  Developments (NekRS)

q Highly-tuned kernels* sustaining 1-2 TFLOPS on V100 (w/o communica<on)
q Overlapped computa<on/communica<on

q Auto-tuned communica<on (similar to Nek5000/CEM gslib)

q 32-bit precondi<oners to reduce communica<on overhead
q Extensive suite of mul<level precondi<oners for pressure Poisson problem
q Extensive (and growing) support for mul<-physics problems
q Scalable parallel I/O
q Ported to mul<ple GPUs (V100, A100, MI100, …)

Initial OCCA kernel development from libparanumal
library out of Tim Warburton’s group at V.Tech.

GFLOPS



Spacer Grid Performance: n=1.1 B Misun Min, ANL, Elia Merzari, PSU

q Code is running fastest at strong-scale limit (large processor count, parallel efficiency~0.8)

q For Navier-Stokes, Summit is faster at the strong-scale limit than Mira (surprisingly).

Figure 5. The structure of spacer grid and mixing vanes and a 5x5 fuel rod bundle.

grid of 2x2 bundle case consists of 59.14 K elements. A dedicated meshing study shows that the element

count per subchannel and per hydraulic diameter in the RANS case can be further reduced to the 1/21 of that

in the detailed LES case without suffering significant accuracy degradation. Once the momentum sources

are successfully tested in the 2x2 bundle, the next step is to extend the testing geometry to larger domains,

and eventually to the full core.

Figure 6. A 2x2 subchannel geometry for momentum source development and testing.

To drive the flow circulation in a subchannel which has no SGMV, the lateral momentum source terms are

devised as follows
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Figure 8. The instantaneous velocity fields at (a) a downstream location after SGMV, (b) the onset of
mixing vanes region. The subchannel selected for post-processing is highlighted with a red box.

as an anchor in the calibration of lateral momentum sources dedicated for RANS calculations. The com-

parisons of swirling and mixing factor are presented in Figure 10 and Figure 11, respectively. It is clearly

demonstrated that the RANS momentum sources developed can successfully reproduce the time-averaged

macroscale flow physics revealed by the high-fidelity LES reference. The momentum sources not only

produce the equivalent magnitude of flow swirling and inter-subchannel crossflow, but also capture the con-
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ExaSMR: 17x17 Rod-Bundle Performance Misun Min, Yu-Hsiang Lan ANL

Compute Profiling GPU Time Breakdown (43% of Run Time)
27,648 GPUs, n/P = 1.8M , E /P = 3573, N = 8, Nq = 11

time [%] total time instances average min max name
11.8 37455851267 63984 585394 530748 688475 _occa_nrsSubCycleStrongCubatureVolumeHex3D_0
11.2 35299998642 1003791 35166.7 8704 76128 _occa_gatherScatterMany_floatAdd_0

9.5 29998225559 523524 57300.6 24223 112223 _occa_fusedFDM_0
8.2 25841854995 523713 49343.5 16320 163294 _occa_ellipticPartialAxHex3D_0
6.5 20589069440 812325 25345.9 5696 79296 _occa_scaledAdd_0
6.3 20084031405 159758 125715.3 8672 338654 _occa_gatherScatterMany_doubleAdd_0
4.1 12813250728 1003791 12764.9 5823 25504 _occa_unpackBuf_floatAdd_0
4.0 12785871394 261762 48845.4 20992 83487 _occa_postFDM_0
3.8 12026221342 1003791 11980.8 6016 30688 _occa_packBuf_floatAdd_0
3.0 9498908211 31992 296915.1 234334 486589 _occa_nrsSubCycleERKUpdate_0

Table 3: GPU time breakdown

complexity of the rod bundles is relatively mild com-
pared to the pebble beds. Moreover, the synthetic
initial condition does not quickly transition to full
turbulence. We expect more pressure iterations in
the rod case (e.g., pi ⇠ 4–8) once turbulent flow is
established.
Pebble Bed–Full Core. The main target of our study
is the full core for the pebble bed reactor (Fig. 1,
center), which has 352,625 spherical pebbles and a
fluid mesh comprising E = 98782067 elements of
order N = 8 (n ⇡ 51B). In this case, we consider the
characteristics-based timestepping with�t = 4.e-4
or 8.e-4, corresponding to respective Courant num-
bers of C F L ⇡ 2 and 4. Table 5 lists the battery of
tests considered for this problem, starting with the
single-sweep Chebyshev-Additive Schwarz (1-Cheb-
ASM) pMG smoother, which is the default choice
for smaller (easier) problems. As noted in the pre-
ceding section, this choice and the two-smoothings
Chebyshev-Jacobi (2-Cheb-Jac) option yield very
high coarse-grid solve costs because of the relative
frequency in which the full V-cycle must be executed.

NekRS Strong Scale: Rod-Bundle, 200 Steps
Node GPU E n n/P tstep[s ] Eff
1810 10860 175M 60B 5.5M 1.85e-01 100
2536 15216 175M 60B 3.9M 1.51e-01 87
3620 21720 175M 60B 2.7M 1.12e-01 82
4180 25080 175M 60B 2.4M 1.12e-01 71
4608 27648 175M 60B 2.1M 1.03e-01 70

NekRS Weak Scale: Rod-Bundle, 200 Steps
Node GPU E n n/P tstep[s ] Eff

87 522 3M 1.1B 2.1M 8.57e-02 100
320 1920 12M 4.1B 2.1M 8.67e-02 99
800 4800 30M 10B 2.1M 9.11e-02 94

1600 9600 60M 20B 2.1M 9.33e-02 92
3200 19200 121M 41B 2.1M 9.71e-02 88
4608 27648 175M 60B 2.1M 1.03e-01 83

Table 4: NekRS strong and weak scaling for rod bundle simu-
lations. n/P : number of grid points per gpu, E /P : number of
elements per gpu, tstep: average wall time for 101–200 steps, and
Eff: efficiency. BDF3+EXT3 is used for timestepping with�t =
3e-4, corresponding to CFL=0.54.

Analysis of the standard NekRS output suggested
that more smoothings at the finer levels would al-
leviate the communication burden incurred by the
coarse-grid solves. We remark that, on smaller sys-
tems, where the coarse-grid solves are less onerous,
one might choose a different optimization strategy.

The first step in optimization was thus to increase
the number of smoothings (2-Cheb-ASM) and to
increase the number of pMG levels to four, with
N=8, 6, 4, 1 (where 1 is the coarse grid). These steps
yielded a 1.6⇥ speed-up over the starting point. Sub-
sequently, we boosted, L , the number of prior so-
lutions to use as an approximation space for the
projection scheme from 8 to 30, which yielded an
additional factor of 1.7, as indicated in Fig. 3.

Given the success of projection and additional
smoothing, which lowered the FlexCG iteration
counts to <6, it seemed clear that GMRES would
be viable. A downside of GMRES is that the memory
footprint scales as K , the maximum number of iter-
ations and the work (and potentially, communica-
tion) scales as K

2. With K bounded by 6, these com-
plexities are not onerous and one need not worry
about losing the projective property of GMRES by
having to use a restarted variant. Moreover, with so
few vectors, the potential of losing orthogonality of
the Arnoldi vectors is diminished, which means that
classical Gram-Schmidt can be used and one thus
has only a single all-reduce of a vector of length< K

in the orthogonalization step.
The next optimizations were focused on the ad-

vection term. First, we reduced the number of
quadrature points from Nq = 13 to 11 (in each direc-
tion). Elevated quadrature is necessary for stability,
but not for accuracy. While one can prove stability
for Nq � 3N /2 [30], it is not mandatory and, when
using the characteristics method, which visits the
advection operator at least four times per timestep,
it can pay to reduce Nq as long as the flow remains
stable. Second, we increased �t by a factor of 2,
which requires 2 subcycles to advance the hyper-
bolic advection operator (i.e., doubling its cost), but

7

Performance on Full Summit

Strong- and Weak-Scaling on ORNL Summit



NekRS on Summit:  352,000-Pebble Bed – 27648 V100s
Y.Lan, M.Min, E. Merzari

Cases cyl146 cyl1568 ann3344 cyl11k cyl49k ann127k ann350k
IO for Qhull 4.56E-01 1.10E+00 2.64E+00 6.36E+00 1.97E+01 5.13E+01 2.79E+02
Voronoi cells (Qhull) 1.70E-01 4.29E-01 1.07E+00 2.50E+00 8.77E+00 2.12E+01 7.98E+01
Facet generation 9.37E-01 6.79E+00 1.50E+01 5.71E+01 4.69E+02 3.41E+03 4.70E+04
Edge collapse 8.67E-02 2.34E-01 4.53E-01 1.26E+00 5.24E+00 1.30E+01 8.20E+01
Facet/edge clean-up 1.21E+00 6.57E+00 8.66E+00 2.75E+01 1.29E+02 3.47E+02 2.55E+03
Tessellation 2.37E+00 1.40E+01 2.78E+01 9.62E+01 7.30E+02 4.09E+03 2.62E+04
All-quad generation 1.67E-01 7.02E-01 1.34E+00 4.24E+00 1.74E+01 4.61E+01 1.20E+02
All-quad to all-hex 5.64E-02 2.48E-01 5.13E-01 2.42E+00 9.34E+00 2.52E+01 7.97E+01
Extrusion 1 4.99E-01 3.58E+00 8.60E+00 2.11E+01 8.58E+01 3.10E+02 1.63E+03
IO for smoothing 2.42E-01 4.99E+00 4.13E+00 1.30E+01 5.85E+01 1.96E+02 1.12E+03
Mesh smoothing (42 ranks) (42 ranks) (42 ranks) (84 ranks) (168 ranks) (336 ranks) (1008 ranks)

3.58E+00 4.12E+01 9.95E+01 3.99E+02 7.26E+02 3.19E+03 1.10E+03
Extrusion 2 1.01E+00 5.36E+00 1.08E+01 2.80E+01 1.10E+02 6.72E+02 2.12E+03
IO for projection 1.55E-01 7.71E-01 1.62E+00 5.13E+00 2.19E+01 1.62E+02 4.16E+02
Curve-side projection (42 ranks) (42 ranks) (42 ranks) (84 ranks) (168 ranks) (336 ranks) (25200 ranks)

4.00E+01 2.10E+02 1.80E+03 1.68E+03 4.20E+03 3.60E+03 7.20E+03
Total 6.71E+01 3.41E+02 2.05E+03 2.55E+03 7.51E+03 1.89E+04 1.88E+05

Table 2: Breakdown of meshing times (seconds, unless otherwise indicated). Most functions are running with serial
Matlab. The mesh smoothing and projection are running on OLCF/Summit’s CPU nodes, which introduce some I/O
time. Remarks: The ann350k case ran twice for the edge collapse tolerance adjustment, so the total time is much
higher. Projection for the ann350k case is done on the N=7 grid (512 points) while others are on N=2 (27 points).

Figure 8: Turbulent flow in an annular packed bed with N = 352625 spheres meshed with E = 98, 782, 067 spectral
elements of order N = 8 (n = 50 billion gridpoints). This NekRS simulation requires 0.233 seconds per step using
27648 V100s on Summit. The average number of pressure iterations per step is 6.

elements and n = 50.5 billion grid points.

Overall, the development has satisfied the objective of
allowing us to produce large-scale high-quality meshes
suitable for high-order spectral element simulations of
turbulence in packed beds. In particular, the 352K
case, which corresponds to a full reactor core, takes
only .233 seconds per step when running on 4608 nodes

(27648 V100s), which corresponds to 1.8 million points
per V100. This configuration would require only 6
hours to compute a single flow-through time on all
of Summit, implying that parameter studies will be
readily tractable on exascale platforms. The number of
pressure iterations is ⇡6 per step when using a tuned
version of the NekRS multigrid solver. Tuning was



Initial Formulation: 
- 45% of the time in the coarse-grid solve
- Alleviate coarse-grid pressure by improving fine-level smoother, increasing 

dimension of pressure-projection space, adding GMRES, etc.
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Major Algorithmic Variations, 352K Pebbles, P=27648
Case Solver Smoother L Nq �t vi pi tstep
(a) FlexCG 1-Cheb-ASM:851 8 13 4e-4 3.6 22.8 .68
(b) FlexCG 2-Cheb-Jac:851 8 13 4e-4 3.6 17.5 .557
(c) ” 2-Cheb-ASM:851 8 13 4e-4 3.6 12.8 .468
(d.8) ” 2-Cheb-ASM:8641 8 13 4e-4 3.6 9.1 .426
(d.L) ” 2-Cheb-ASM:8641 0–30 13 4e-4 3.6 5.6 .299
(e) GMRES ” 30 13 4e-4 3.5 4.6 .240
(f) ” ” 30 11 8e-4 5.7 7.2 .376
(g) ” ” 30 11 8e-4 5.7 7.2 .361 (no I/O)

Table 5. Progression of algorithmic trials. See Fig. 3 for Cases (d.L), L=0:30.

NekRS Strong Scale: 352K pebbles, E=98M, n=50B
N = 8, Nq = 13, �t = 4.e-4, L = 8, 1-Cheb-Jac:851

Node GPU n/P vi pi tstep Eff
1536 9216 5.4M 3.6 17.3 .97 1.00
2304 13824 3.6M 3.6 18.0 .84 76.9
3072 18432 2.7M 3.6 16.6 .75 64.6
3840 23040 2.1M 3.6 19.6 .67 57.9
4608 27648 1.8M 3.6 17.5 .55 58.7
N = 8, Nq = 13, �t = 4.e-4, L = 8, 1-Cheb-ASM:851

Node GPU n/P vi pi tstep Eff
1536 9216 5.4M 3.6 11.6 .81 100
2304 13824 3.6M 3.6 12.3 .65 83.0
3072 18432 2.7M 3.6 12.3 .71 57.0
3840 23040 2.1M 3.6 13.5 .54 60.0
4608 27648 1.8M 3.6 12.8 .46 58.6
N = 8, Nq = 11, �t = 8.e-4, L = 30, 2-Cheb-ASM:8641
Node GPU n/P vi pi tstep Eff
1536 9216 5.4M - - - -
2304 13824 3.6M 5.7 7.2 .55 100
3072 18432 2.7M 5.7 7.2 .56 73.6
3840 23040 2.1M 5.7 7.2 .39 84.6
4608 27648 1.8M 5.7 7.2 .36 76.3

Table 6. NekRS Strong Scale using BDF2 with characteristic.

the near wall region. This is a well known gap hindering the
deployment of this class of reactors. Beyond pebble beds, the
fact that such geometry can be addressed with such low time-
to-solution will enable a broad range of optimizations and
reductions in uncertainty in modeling that were until now not
achievable in nuclear engineering. The impact will extend to
all advanced nuclear reactor design with the ultimate result
of improving their economic performance. This will in turn
serve broadly the goal of reaching a carbon-free economy
within the next few decades.

The study presented here demonstrates the continued
importance of numerical algorithms in realizing HPC
performance, with up to a four-fold reduction in solution
times realized by careful choices among a viable set of
options. This optimization was realized in relatively short
time (a matter of days) by having a suite of solution
algorithms and implementations available in NekRS—no
single strategy is always a winner. For users, who often
have a singular interest, being able to deliver best-in-class
performance can make all the difference in productivity.
In Nek5000 and NekRS, we support automated tuning of
communication strategies that adapt to the network and
underlying topology of the particular graph that is invoked
at runtime. This approach has proven to make up to a factor
of 4 difference, for example, in AMG implementations of the
coarse-grid solver.
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Result:
- 9X reduction in coarse-grid solve overhead 
- 2.2X reduction in time per step
- Only 6 hours of run-time required for full core simulation.                                       



Summary of Current HPC Landscape - Scientific Computing Perspective

q Pre-exascale systems such as Summit are realizing 3X performance gains over 
strong-scale limit on Mira (i.e., 3X reduction in time-per-step).

qSummit enables much larger problems – 175M elements vs. 15M elements 
(factor of 11 in problem size)

qSummit is a 200 TFLOPS platform;  5X smaller than exascale.

qExascale will not reduce time to solution unless your job is too large for 
Summit, but it will make large Summit runs look small, which is good for 
exploring parameter spaces. 



Summit-Mira Comparison Ramesh Balakrishnan ANL

E=3.14M, N=7, n = 1.08B

Mira:
P=524288 ranks (262144 cores)
n/P = 2060
0.496 s/step (CFL ~ 0.45)
24 hour run (of several)

Summit:
P=528 ranks (528 V100s)
n/P = 2.05M
0.146 s/step (CFL ~ 0.45)
24 hour run (of several)

Summary:    
At strong-scale limit (80% eff.)

- NekRS+Summit à 3.4X faster than Nek5000+Mira
- Requires about 10% of Summit resources vs. ½ Mira

(This result not a foregone conclusion…2020 BP Paper.)



Local Matrix-Free Stiffness Matrix in 3D

• For a deformed spectral element, W e, never form local stiffness matrix.

• Through use of chain rule + GLL quadrature:
– Matrix-free operator evaluation.
– Operation count is only O (N 4) not O (N 6)  [Orszag ‘80 ]

– Memory access is 7n  (Grr , Grs , etc., are diagonal )
– Work is dominated by matrix-matrix products involving Dr , Ds , etc.

Dr = (I ⌦ I ⌦ D̂) Grs = J �B �
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B – diagonal mass matrix
J – Jacobian on GLL nodes


