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Motivation

Hurricane Rapid Intensification (RI) (where max wind velocities exceed ~30 mph within 24-
hour period) continues to be an important tooic to understand extreme weather.
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To properly capture Rl requires LES models at Ax = O(100 m) that run stably with as little

20 40 60

dissipation as possible. Running a CRM at this resolution is still too expensive (cannot be
done on a regular basis). Our simulations in [1] were run at Ax = O(2 km) (CRM with 80
million DoF). LES would require 32 billion DoF with At 20x smaller (i.e., 6(10%) more
expensive).

To run such simulations require different strategies: to resolve fine-scale features, for time-
integration, and in high-performance computing.

[1] Hasan et al., The effects of numerical dissipation on hurricane rapid intensification with observational heating, MFEM Seminar 2023

JAMES Vol 14 Issue 8 (2022)



Governing Equations

Compressible Euler Equations (Non-hydrostatic)
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NUMA also carries an internal energy form (used for space weather

applications) [2] and two conservation forms (used for Entropy-
Stable work).

[2] Kelly et al., A physics-based open atmosphere boundary condition for heigh-coordinate atmospheric models, MFEM Seminar 2023




Element-based Galerkin Methods [3]

Domain decomposition

N,
Q=) Q,
e=1

Approximate local solution as:

MN
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Reference element

Legendre-Gauss-Lobatto points
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Continuous/discontinuous Galerkin methods

. : oq
Governing equation: — + V- F(q) = S(q)
il Fy =F(qn)
Approximate the global solution as: g, =) Yi(x)q; (1) Sh — S(Sj\j)

j=1

: : oqe
Define residual: R (%(Ve)) ==LV FY s =
[

Problem statement:

test function

/ Sca ={yY € H'(Q) : ¢y € Py(Q.) VQ.}
Find qv €S Yy eS8 {
Spa = {1 € L*(Q) : ¢ € Pn(Q.) VQ.}

such that / Y, R(qn)dQe =0
Qe
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Continuous/discontinuous Galerkin methods

Integral form: / $iR(q$)dQ, = 0

O (e) . .
/ Wy~ qN o). +/ ¢iV-F§V)dQ€—/ $:59dQ, = 0
6 Qe

Integration by parts: /Q wN-Fﬁi)dQe:/

2e

V- (p;F)dr, — / Vi - FdQ, = /
Qe

n-@biFE\e,)dFe—/ Ve - FiYdQ.
L. e

g
/ wz N A0, +/F n-wiFg\?)dFe—/ﬂ wi-ng)dQe—/Q ;S\ dQ. = 0

-
face integral volume integrals
Matrix form:
d (_6) Nfaces T ~ T
M — > (M) FOED — (DY) FY - 519 =0
MY = /Q bith;dQe M) = /F wip;n(eNAr, D\ = /Q Vipsah;dSd,
mass matrix face mass matrix differentiation matrix
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Unified CG/DG methods

0q'® .
[ W, ;‘;V dQe+J %n-F§V>dre—[ vl,/,..ngdgze—[ yS©dQ, =0
Q r,

1. Evaluate “volume” integrals on element interiors
oo R® = J Vi, - F\¥dQ, +J y; S\ dQ,
ST Q Q

e e

r element edges

e

2. Evaluate flux integrals 3-:::: C R© = R _ J Wi n - FS) dr, CG: cancels at interior
[N

DG: matrices are block diagonal
except for the flux matrix

Ne
3. Direct Stiffness Summation — R= /\ R
e=1

4. Multiply by inverse global mass matrix and evolve |
g _ M—lR We rely on inexact

time step At i " integration so M is
diagonal

e NUMA carries CG and DG, xXNUMA CGQG, and ATUM DG

8 MFEM Seminar 2023



Flux-Difference DG methods

Have also been exploring flux-difference DG methods

First consider that discrete integration by parts (SBP property) is satisfied by Lobatto points with inexact integration

( +DT)f(e)‘ ijfj(e)—)[ (W + v f) dx = wf T,

0

Such that row sum of D is zero:

This allows us to write Advection and Conservation forms in the same way (ignoring the boundary flux for simplicity)

dq(e)
! @qle) ) —
M, 7 +D<kqj>—0

where k=] yields conservation form and k=i advection form
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Flux-Difference DG

methods

For conservation laws discretized as:

dq®
l (e) —
s +D;f;” =0

M

l

We can write them in a general form as

(e) My
]\4{; (]l‘qli '+' ::zi:: j[:)l o ui;gfz) — ()
a = Sy

Ly error of T [K]
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with, e.g., the kinetic-energy-preserving flux [4] being

Inertia Gravity Wave

with warped grid [5]
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FeMqw = 2[ull{{g}),  F5"(qw =2{{u}}{{g}}

and other options for entropy-stable flux [5]

Let's see why this is important

[4] Souza et al. The flux-differencing DG applied to an idealized fully compressible nonhydrostatic dry atmosphere, JAMES 2023
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[5] Waruszewski et al. Entropy Stable DG for Balance Laws in Non-Conservative Form: Applications to the Euler Equations with Gravity JCP (2022)
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Stabilizing EBG Methods

Baroclinic Instability in a channel for 12-days using Grid Resolution: 100 km x 100 km x 1 km

(c) 500m Relative Vortncnty s ) at Day 12
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SE with hyper-viscosity (that needs to be tuned) yields similar results to DG with Kinetic-Energy-
Preserving and Entropy-Stable flux (with no need to tune). All NUMA simulations are stable indefinitely.

Conclusion: SE + Visc and DG KEP and ES offer stability with limited dissipation (good for hurricane
RI); hyper-viscosity needs to be tuned. SE + Visc currently offers faster time-to-solution.

11 MFEM Seminar 2023



Multi-scale Methods

Recalling multi-scale methods (see [6]) we consider

the following PDE .. _
— = S(9) where g = g + g with (g, g, § gk
- (q) q=q+q (4.4,9) TR o
represent the total, coarse-scale, and fine-scale girfz L // Grid
solutions; S(g) the RHS operator " ::/:: A
] ff:/’ //
Using a VMS approach, we can decouple these (after ™ P
some algebra) as (),
[ 0q [ g oS
wi—dL, = | <S@ -—+ —(é)fl> ds2
Jo "o g ot  0q )
[ g [ og oS
U — QS = vl S(g) —— +—(q)g | dS
)., Wi el )., W, < (q) y aq(q)q> y

Unlike classical VMS, here we computationally
resolve coarse and fine scale solutions. However, we
are currently first considering a simpler approach.

[6] Weinan E and Bjorn Enquist, Multiscale modeling and computation, Notices of the AMS 2003 MFEM Seminar 2023



Multi-scale Methods

Using the multi-scale modeling framework (MMF, see [7]) we consider the two PDEs

Z—g = 8(Q) + F(Q, q) and % = s(q) + f(gq, Q) where (Q, q) represent the coarse-

scale and fine-scale solutions, (S, s) the RHS operators, and (F, f) the coupling

(forcing) between the coarse- and fine-scales

Using a standard super-parameterization approach, we solve the two problems
denoted as

Q: Coarse-Scale Model: g: Fine-Scale Model:

Computational savings arises from elements only communicating at the Coarse-Scale
model and at its larger time-step AT = m At

[7] Grabowski and Smolarkiewicz, CRCP: a Cloud Resolving Convection Parameterization for modeling the MFEM Seminar 2023
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MMEF Result: Squall Line

Time: 0 sec

velocity magnitude

potential temperature
clouds
rain
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Work by Soonpil Kang (NPS) : MFEM Seminar 2023



Time-Integration

The classical way to evolve CRM and LES in time are IMEX methods as follows:

dq o T
— = {S(q) — L(q)}EX + [L(@)] = S(q) + F(q) , where L(q) is a linear operator that

extracts the acoustic waves and allows us to partition the ODE into its slow and fast
components (&, F)

We have relied on s-stage Additive Runge-Kutta (SDIRK) methods:

00 = g" +Atz als (QV) + Z LF (0W),

j=1
qn+1 = g" + Atz b.S (Q(j))
j=1

Replacing & — A where J/ is a nonlinear operator is also possible but requires
special care in solving (e.g., Newton’s method, JFNK, etc.).

For many problems, standard IMEX may not be optimal. In particular, it the slow process
is expensive to compute and the fast process inexpensive.

15 MFEM Seminar 2023




MMF + MR

To understand why, let us first describe the current

strategy used to evolve the MMF scheme: ; »
L 4 0 o]
1. Qn+1 — Qn + At [R(Q”H,q”)], |
i i — At n n+1
2 g = g — [ R(q"*, Qn+1)] m AU
m oo o o9

Fast Process (m=4)

Here we use IMEX-ARK1 but the coupling terms are
handled the same even for, say, IMEX-ARKZ or higher,

where coupling error is O(Af).

Can we do better?

MFEM Seminar 2023




MME+ MR | S
We propose a more consistent coupling using multirate (MR) (e.g., ¢
see [8]) as follows, where the stages are synchronized. The stage Slow Process
values are given as
n n+1/2 n+1
o1 AL
0 0y (x v Y
1.0 = 0" + A’Z a9, R (Q(J ). 4 )>, . ‘o
k=1 . Fast Process (m=2)
i'—1
2 g% = gL 4 (0 _ 0 YA I p (% o 0| o
- q ={q + Cjo _ Cjo—l 4 ail,k q ) Q /
k=1 c| A Co | Q21
o bT C3 | 31 @32
-0 -0 - . <0 *
3. U = g% 4 C,-O()Afz b'R (qw ). 0 )), o b b
i=1
SO A12) 0
%) — n 0 i) 2 Baf,
4.QV7 = 0"+ Atzbi R(2%.4") B2l S,
i=1 = | b K e
ey | on b MM Qdb,
Some concerns: MIS [8] executes MR across stages and is general oD | O OB 9B al, al,
tableau indicates a likely issue with conservation of linear invariant: Gra =1l ah Gk & gh & G
MPRK [9] allows for conservation but limited to the same fast/slow 3-stage 2-Rate Fast Tableau

method. This approach is certainly better than the standard approach
but will it be too expensive?

[8] Schlegel, Knoth, Arnold, Wolke, Multirate RungeKutta schemes for advection equations, JCAM 2009

[9] Constantinescu, Sandu, Multirate Timestepping Methods for Hyperbolic Conservation Laws, JSC 2007 MFEM Seminar 2023



Multirate Time-Integration

Let us consider the baroclinic instability on the 3-sphere using ARK1 for hyper-ditfusion and
1D-IMEX ARK2 for the remaining operators.

90N Surface pressure at day 10.0 Singlerate multirate NUMA Scaling with 1D-IMEX-ARK2
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Multirate yields 30% increase in performance over singlerate 1D-IMEX-ARK2 (which we know
already scales well). We have yet to exploit all possibilities offered in:

1. Patrick Mugg, Extrapolated Multirate Methods for Hyperbolic Partial Differential Equations,
NPS PhD Thesis (June 2021); paper in preparation

2. Alves, Kelly, Giraldo, Implicit time-integrators for global nonhydrostatic atmospheric
modeling (in preparation)

MFEM Seminar 2023



IMEX: No-Schur vs Schur Form

For the shallow water equations:

$,+V-U=0
U +Vep=0
Discretizing in both space (via strong form CG) and time (assume . o oS

ARK1) results in the No-Schur form:

5

0 N S & N HEEHERE - I I R W ]

M¢n+1 + AtDTUn+1 — M¢n .
MU + AtDgp"t! = MU”

-15
0

Im

20 40 60 80 100 120
Re

Applying a block LU factorization (or subbing U™ into ¢"*! equation)
yields the Schur form:

M¢n+1 _ At2 DTM—1D ¢n+1 — R"

A few observations: 1) we need M~!: 2) This system is smaller (O(N?)
instead of O(N,, N)?): 3) better conditioned [10].

ar

10] E.X. Giraldo, M. Restelli, and M. Laeuter, Semi-implicit formulations of the Euler equations: applications to

nonhydrostatic atmospheric modeling, SIAM J. Sci. Comp., Vol. 32, 3394-3425 (2010) MFEM Seminar 2023



IMEX: No-Schur vs Schur Form

For general systems of equations we write (after integration by parts):

o0q'® .
J W, 1 dQe+J wn - F¢ )dFe—J V%-F(e)dFBZJ wS9dQ,
Q r, Q, Q

e

Writing the numerical fluxes as:

FO) = {({F}} - %“[[qn e [ wn - FO4r, = CIF - Jlq
I

e

d
Discretizing in space (via EBG) yields: M—q +C'F-Jlq-D'F=S

dt
Discretizing in time (via ARK1) yields: (M — AtJ) q"t' + Atf[CTF — D'F — S1"! = Mq"

If J non-empty then no longer block diagonal so computing (M — AtJ)™! is non-trivial

Why this matters: To construct the Schur complement, we need to isolate terms from one
equation to substitute into another. To do this, we need to invert the mass matrix

20

MFEM Seminar 2023



IMEX: No-Schur vs Schur Form

For DG we can avoid this difficulty by separating Linear and Nonlinear fluxes:

aq(e) )
[ ,. dQ, + J yn - (F, + F\,)dl, — J
Q ot r

V- (Fp + Fy)9dT, = [ yS'dQ,
Q

Q

e e e e

Which we write in matrix-vector form:

(M = AJ,) " + Ar (CT =D Fjt = (M + Addy, ) @ — Af[S + (CT = D) Fy, "
n+1

Flux Choices: It J; = 0 then we can easily isolate q

With the proper selection of fluxes [11] we can construct a stable DG Schur form.

[11] S. Reddy, M. Waruszewski, F.A.V. B. Alves, F.X. Giraldo, IMplicit-EXplicit formulations for discontinuous Galerkin

MFEM Seminar 2023
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IMEX: DG Schur Form

No-Schur Form: py=p—avV-U, U, =U-a«a ( VP, + pﬂqu)
E, = E-aV- (hOUtt)’ P,={— DE,;—p,P)

Schur Form for Pressure (plugging p,, = U, = E,, ):

P, —aXy = DIV - (hgL) = pL1 = (y = DIE — $p — a(V - (hR) — ¢V - R)]

G A A
L=A"VP, + TlPﬂ)], R=ANU-aGhyp—-E)] A=I1+a’GVh,

Properties of Schur Form: all eigenvalues are real and positive (SPD as expected for a

—e—3D: No Schur: AT Flux —=—3D: No Schur: CA Flux ——3D: Schur: CA Flux

H e | m h O |tZ O pe rato r)l See [1 1 ] . —=—1D: No Schur: AT Flux —+—1D: No Schur: CA Flux ——1D: Schur: CA Flux
e No Schur: AT Flux w No Schur: CAFlux a Schur: CA Flux , EQ: Set3C __a————
107 —
Lo | Weak Form: 3D-IMEX| 075 [Weak Form: 1D-IMEX
* 0.50
9 . ° - . L4 ™
0.5 “*.. e ..o? o’ . 10° 4
et o.. o 0.25 ° —
-t -, ¢ NS
£ 0.0 ARNMSeGEMENEE:. ¢¢ ¢ © oo 4 £ 0.00 Biags A A ° . K * 103
Q.. o. : -
"~ o, , -0.25 .
-0.5 & A . .
((" . ¢ ., -0.50 e o o 107 M—‘
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[11] S. Reddy, M. Waruszewski, F.A.V. B. Alves, F.X. Giraldo, IMplicit-EXplicit formulations for discontinuous Galerkin MFEM Seminar 2023
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IMEX: DG Schur Form

Acoustic Wave on the3-Sphere: P (Pa)
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B N
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Summary

EBG offers elegant way to approximate spatial derivatives of PDEs.

EBG methods offer much flexibility: geometric and algorithmic.

Schur forms ofter an increase in performance as stand-alone methods or as
preconditioners for more sophisticated methods (e.g., nonlinear IMEX).

Flux-Ditterencing pertorm well under the stability metric but are computationally
expensive (ES is 10x more expensive than hyper-diffusion and KEP is 5x due to a
variety of reasons such as the time-step restriction and number of FLOPS).

Combing Flux-Difterencing DG with Schur forms is appealing.

MFEM Seminar 2023



Summary

Our MMF model (xNUMA) is able to launch one CRM with an arbitrary
number of LES models in both 2D and 3D.

Completed work: squall line test with warm rain [12].

Future work: Hurricane simulations with moisture (benchmark
From [13]

=)
<
o
rbD

g ~£x-\olume kernel

simulations in progress).

Peak
1707 GFLOPS/s

Currently, CRM uses MPI. N LES runs:

GFLOPS/s

-1 Update Kernel of ARK

-0~ Gradient kernel

% Diffusion kernel
extract_q_gmres_schur

~O~create_lhs_gmres_schur_set2c

-} create_rhs_gmres_schur

— Roofline

will use GPUs (work in progress). I A R

use N MPI ranks to exploit hardware peak performance.

Multirate time-integration offers a high-order, consistent, elegant,
and powerful way to solve MMF problems.

[12] S. Gabersek, F.X. Giraldo, and J. Doyle, Dry and moist idealized experiments with a two-dimensional spectral element model, MWR 2012 MFEM Seminar 2023

[13] D.S. Abdi, F.X. Giraldo, E.M. Constantinescu, L.E. Carr lll, L. Wilcox, T. Warburton, Acceleration of the Implicit-Explicit NUMA on Manycore Processors, IJHPCA (2017)



