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The Programmer’s Burden
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• The decline of Moore's law and an increasing 
reliance on computation => explosion of 
specialized software packages and hardware 
architectures.


• Domain-experts must customize programs and 
learn platform-specific API's, instead of working 
on their intended problem.


• Rather than each user bearing this burden, 
compilers can automatically generate fast, 
portable, and composable programs!



Extending the Boundaries of Compilers

Enzyme: fast, parallel, and rewrite-free derivative generation; 

Tapir: understand and optimize parallel programs 

Polygeist: run GPU code on CPUs, 2.7x faster than expert-written code, 
preserve program structure to leverage device parameters perform HLS


Tensor Comprehensions (TC): automatically generate fast tensor 

arithmetic 

AutoPhase: ML-based optimization of programs/circuits
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Enzyme: fast, parallel, and rewrite-free derivative generation; 

Tapir: understand and optimize parallel programs 

Polygeist: run GPU code on CPUs, 2.7x faster than expert-written code, 
preserve program structure to leverage device parameters perform HLS


Tensor Comprehensions (TC): automatically generate fast tensor 

arithmetic 

AutoPhase: ML-based optimization of programs/circuits



AP Calculus: Revisited

• Derivatives compute the rate of change of a function’s output with respect to input(s)


• Derivatives are used widely across science


• Machine learning (back-propagation, Bayesian inference)


• Scientific computing (modeling, simulation, uncertainty quantification)

6 from Efficient Differentiation of Pixel Reconstruction Filters for Path-Space Differentiable Rendering, 
SIGGRAPH Asia 2022, Zihan Yu et al

Target Reconstruction

https://dl.acm.org/doi/pdf/10.1145/3550454.3555500


Automatic Derivative Generation

• Derivatives can be generated automatically from definitions within programs  
 
 
 
 

• Unlike numerical approaches, automatic differentiation (AD) can compute the derivative of ALL 
inputs (or outputs) at once, without approximation error!
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AD

double relu3(double x) { 
  if (x > 0) 
    return pow(x,3) 
  else 
    return 0; 
}

double grad_relu3(double x) { 
  if (x > 0) 
    return 3 * pow(x,2) 
  else 
    return 0; 
}

// Numeric differentiation 
// f’(x) approx [f(x+epsilon) - f(x)] / epsilon 
double grad_input[100]; 

for (int i=0; i<100; i++) { 
  double input2[100] = input; 
  input2[i] += 0.01; 
  grad_input[i] = (f(input2) - f(input))/0.001; 
}

// Automatic differentiation 
double grad_input[100]; 

grad_f(input, grad_input)



Existing AD Approaches (1/3)

• Differentiable DSL (TensorFlow, PyTorch, DiffTaichi)


• Provide a new language designed to be differentiated


• Requires rewriting everything in the DSL and the DSL must support all operations in original 
code


• Fast if DSL matches original code well import tensorflow as tf 

x = tf.Variable(3.14) 

with tf.GradientTape() as tape: 
  out = tf.cond(x > 0, 
           lambda: tf.math.pow(x,3), 
           lambda: 0 
        ) 
print(tape.gradient(out, x).numpy())

double relu3(double val) { 
  if (x > 0) 
    return pow(x,3) 
  else 
    return 0; 
}

Manually 
Rewrite



Existing AD Approaches (2/3)

• Operator overloading (Adept, JAX)


• Differentiable versions of existing language constructs (double => adouble, np.sum => jax.sum)


• May require writing to use non-standard utilities


• Often dynamic: storing instructions/values to later be interpreted

// Rewrite to accept either 
//    double or adouble 
template<typename T> 
T relu3(T val) { 
  if (x > 0) 
    return pow(x,3) 
  else 
    return 0; 
}

adept::Stack stack; 
adept::adouble inp = 3.14; 

// Store all instructions into stack 
adept::adouble out(relu3(inp)); 
out.set_gradient(1.00); 

// Interpret all stack instructions 
double res = inp.get_gradient(3.14);



Existing AD Approaches (3/3)

• Source rewriting


• Statically analyze program to produce a new gradient function in the source language


• Re-implement parsing and semantics of given language


• Requires all code to be available ahead of time => hard to use with external libraries

Tapenade

// myfile.h 
double relu3(double x) { 
  if (x > 0) 
    return pow(x,3) 
  else 
    return 0; 
}

// myfile.c 
double relu3(double x) { 
  if (x > 0) 
    return pow(x,3) 
  else 
    return 0; 
}

// grad_myfile.h 
double relu3(double x) { 
  if (x > 0) 
    return pow(x,3) 
  else 
    return 0; 
}

// grad_myfile.c 
double grad_relu3(double x) { 
  if (x > 0) 
    return 3 * pow(x,2) 
  else 
    return 0; 
}



Existing Automatic Differentiation Pipelines

AD

CodeGen

Optimize

Lower

AD

AD

AD
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Case Study: Vector Normalization

//Compute magnitude in O(n) 
double mag(double[] x); 

//Compute norm in O(n^2) 
void norm(double[] out, double[] in) { 

  for (int i=0; i<n; i++) { 
    out[i] = in[i] / mag(in); 
  } 
}
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Case Study: Vector Normalization

//Compute magnitude in O(n) 
double mag(double[] x); 

//Compute norm in O(n) 
void norm(double[] out, double[] in) { 
  double res = mag(in); 
  for (int i=0; i<n; i++) { 
    out[i] = in[i] / res; 
  } 
}
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Optimization & Automatic Differentiation

Optimize

O (n2) O (n)

AD
res = mag(in) 
for i=0..n { 
  out[i] /= res 
}

d_res = 0.0  
for i=n..0 { 
  d_res += d_out[i]… 
} 
∇mag(d_in, d_res)

O (n)
for i=0..n { 
  out[i] /= mag(in) 
}
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Optimization & Automatic Differentiation

Optimize

O (n2) O (n)

AD
for i=0..n { 
  out[i] /= mag(in) 
}

res = mag(in) 
for i=0..n { 
  out[i] /= res 
}

d_res = 0.0  
for i=n..0 { 
  d_res += d_out[i]… 
} 
∇mag(d_in, d_res)

O (n)

O (n2)
for i=0..n { 
  out[i] /= mag(in) 
}

AD
for i=n..0 { 
  d_res = d_out[i]… 
  ∇mag(d_in, d_res) 
}

O (n2)
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Optimization & Automatic Differentiation
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Optimization & Automatic Differentiation

Differentiating after optimization can create asymptotically faster gradients!

Optimize

O (n2) O (n)

AD
for i=0..n { 
  out[i] /= mag(in) 
}

res = mag(in) 
for i=0..n { 
  out[i] /= res 
}

d_res = 0.0  
for i=n..0 { 
  d_res += d_out[i]… 
} 
∇mag(d_in, d_res)

O (n)

O (n2)O (n2)
for i=0..n { 
  out[i] /= mag(in) 
}

AD
for i=n..0 { 
  d_res = d_out[i]… 
  ∇mag(d_in, d_res) 
}

O (n2)
Optimize

for i=n..0 { 
  d_res = d_out[i]… 
  ∇mag(d_in, d_res) 
}
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Lower Enzyme   .

Optimize

CodeGen

Optimize

       Enzyme Approach

Performing AD at low-level lets us work on optimized code!
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Case Study: ReLU3

entry

cond.true

%result = phi [%call, cond.true], [0, entry] 
ret %result

cond.end

%cmp = %x > 0 
br %cmp, cond.true, cond.end

%call = pow(%x, 3) 
br cond.end

double relu3(double x) { 
  double result; 
  if (x > 0) 
    result = pow(x, 3); 
  else 
    result = 0; 
  return result; 
}

define double @relu3(double %x)

double diffe_relu3(double x) { 
  return __enzyme_autodiff(relu3, x); 
}

C Source LLVM 

Enzyme Usage
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Case Study: ReLU3

entry

cond.true

%result = phi [%call, cond.true], [0, entry] 
ret %result

cond.end

%cmp = %x > 0 
br %cmp, cond.true, cond.end

%call = pow(%x, 3) 
br cond.end

define double @relu3(double %x)

Active Instructions

20



entry

cond.true

%result = phi [%call, cond.true], [0, entry] 

; deleted return 

%result’ = 1.0 
br reverse_cond.end

cond.end

alloca %result’ = 0.0 
alloca %call’   = 0.0 
alloca %x’      = 0.0 
%cmp = %x > 0 
br %cmp, cond.true, cond.end

%call = pow(%x, 3) 
br cond.end

define double @diffe_relu3(double %x, double %differet)

Allocate & zero 
shadow memory for 

active values
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entry

cond.true

%result = phi [%call, cond.true], [0, entry] 

; deleted return 

%result’ = 1.0 
br reverse_cond.end

cond.end

alloca %result’ = 0.0 
alloca %call’   = 0.0 
alloca %x’      = 0.0 
%cmp = %x > 0 
br %cmp, cond.true, cond.end

%call = pow(%x, 3) 
br cond.end

define double @diffe_relu3(double %x, double %differet)

%tmp_res’ = load %result’ 
%call’ += if %x > 0 then %tmp_res’ else 0 
store %result’ = 0.0 
br %cmp, reverse_cond.true, reverse_entry

reverse_cond.end%df = 3 * pow(%x, 2) 
%tmp_call’ = load %call 
%x’ += %df * %tmp_call’ 
store %call’ = 0.0 
br reverse_entry

%0 = load %x’ 
ret %0

reverse_entry

reverse_cond.true

Compute adjoints 
for active instructions
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for active instructions
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entry
%cmp = %x > 0 
br %cmp, reverse_cond.true, reverse_entry

define double @diffe_relu3(double %x)

%3 = 3 * pow(%x, 2) 
br reverse_entry

%0 = phi [%3, reverse_cond.true], [0, entry] 
ret %0

reverse_entry
reverse_cond.true

Essentially the optimal hand-written gradient!

double diffe_relu3(double x) { 
  double result; 
  if (x > 0) 
    result = 3 * pow(x, 2); 
  else 
    result = 0; 
  return result; 
}

Post 
Optimization

24



Experimental Setup

Enzyme:

Ref:

Tapenade:

Adept: -O2

Enzyme      .

Tapenade

Adept

• Collection of benchmarks from Microsoft’s ADBench suite and of technical interest

-O2

-O2-O2

-O2-O2

-O2 Enzyme      . -O2

25



Speedup of Enzyme 
H
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s 
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r

Enzyme is 4.2x faster than Reference!
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Automatic Differentiation & GPUs

• Prior work has not explored reverse mode AD of existing GPU kernels


1. Reversing parallel control flow can lead to incorrect results


2. Complex performance characteristics make it difficult to synthesize 
efficient code


3. Resource limitations can prevent kernels from running at all

27



Efficient GPU Code
• For correctness, Enzyme may need to cache values in 

order to compute the gradient


• The complexity of GPU memory means large caches 
slow down the program by several orders of magnitude, 
if it even fits at all


• Like the CPU, existing optimizations reduce the overhead


• Unlike the CPU, existing optimizations aren’t sufficient


• Novel GPU and AD-specific optimizations can speedup by 
several orders of magnitude

28

 
// Forward Pass 

out[i] = x[i] * x[i]; 

x[i] = 0.0f; 
 
// Reverse (gradient) Pass 

... 
grad_x[i] += 2 * x[i] * grad_out[i]; 
... 



Efficient Correct GPU Code
• For correctness, Enzyme may need to cache values in 

order to compute the gradient


• The complexity of GPU memory means large caches 
slow down the program by several orders of magnitude, 
if it even fits at all


• Like the CPU, existing optimizations reduce the overhead


• Unlike the CPU, existing optimizations aren’t sufficient


• Novel GPU and AD-specific optimizations can speedup by 
several orders of magnitude
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double* x_cache = new double[…]; 
 
// Forward Pass 

out[i] = x[i] * x[i]; 
x_cache[i] = x[i]; 

x[i] = 0.0f; 
 
// Reverse (gradient) Pass 

... 
grad_x[i] += 2 * x_cache[i] 
               * grad_out[i]; 
... 

delete[] x_cache;



Cache Reduction Example
• By considering the dataflow graph 

we can perform a min-cut to 
approximate smaller cache sizes.

30

for(int i=0; i<10; i++) { 
  double sum = x[i] + y[i]; 

  use(sum); 
} 

overwrite(x, y); 
grad_overwrite(x, y); 

for(int i=9; i>=0; i--) { 
  ... 
  grad_use(sum); 
} 

X Y

Sum

Overwritten:

Required for 
Reverse:



XX

Cache Reduction Example
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double* x_cache = new double[10]; 
double* y_cache = new double[10]; 

for(int i=0; i<10; i++) { 
  double sum = x[i] + y[i]; 
  x_cache[i] = x[i]; 
  y_cache[i] = y[i]; 
  use(sum); 
} 

overwrite(x, y); 
grad_overwrite(x, y); 

for(int i=9; i>=0; i--) { 
  double sum = x_cache[i] + y_cache[i]; 
  grad_use(sum); 
} 

• By considering the dataflow graph 
we can perform a min-cut to 
approximate smaller cache sizes.

X Y

Sum

Overwritten:

Required for 
Reverse:

Naive Cache



Sum

Cache Reduction Example
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double* sum_cache = new double[10]; 

for(int i=0; i<10; i++) { 
  double sum = x[i] + y[i]; 
  sum_cache[i] = sum; 

  use(sum); 
} 

overwrite(x, y); 
grad_overwrite(x, y); 

for(int i=9; i>=0; i--) { 

  grad_use(sum_cache[i]); 
} 

• By considering the dataflow graph 
we can perform a min-cut to 
approximate smaller cache sizes.

X Y

Sum

Overwritten:

Required for 
Reverse:

Smallest Cache



Novel AD + GPU Optimizations

• See our SC’21 paper for more (https://c.wsmoses.com/papers/EnzymeGPU.pdf)  
    Reverse-Mode Automatic Differentiation and Optimization of GPU Kernels via Enzyme. SC, 2021


• [AD] Cache LICM/CSE


• [AD] Min-Cut Cache Reduction


• [AD] Cache Forwarding


• [GPU] Merge Allocations


• [GPU] Heap-to-stack (and register)


• [GPU] Alias Analysis Properties of SyncThreads


• …
33

https://c.wsmoses.com/papers/EnzymeGPU.pdf


GPU Gradient Overhead
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• Evaluation of both original code and gradient


• DG: Discontinuous-Galerkin integral (Julia)


• LBM: particle-based fluid dynamics 
simulation


• LULESH: unstructured explicit shock 
hydrodynamics solver


• XSBench & RSBench: Monte Carlo 
simulations of particle transport 
algorithms (memory & compute bound, 
respectively)

XSBench

RSBench

LULESH

LBM (Parboil)

DG (CUDA)

DG (ROCm)

3.2

4.2

2.01

6.3

18.35

5.4



GPU Gradient Overhead
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• Evaluation of both original code and gradient


• DG: Discontinuous-Galerkin integral (Julia)


• LBM: particle-based fluid dynamics 
simulation


• LULESH: unstructured explicit shock 
hydrodynamics solver


• XSBench & RSBench: Monte Carlo 
simulations of particle transport 
algorithms (memory & compute bound, 
respectively)

XSBench

RSBench

LULESH

LBM (Parboil)

DG (CUDA)

DG (ROCm)

3.2

4.2

2.01

6.3

18.35

5.4

Bug in CUDA 
Register Allocator
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Forward (1x) 10x 100x 1000x OOM

XSBench

RSBench

LULESH

LBM

DG (CUDA)

DG (ROCm)
5.4×
o

1378.3×
o

116.6×
o

17.8×
o

19.87×
o

8.7×
o

6.4×
o

2979.1×
o

2.4×
o

2.0×
o

6372.2×
o

9.5×
o

4.7×
o

25.9×
o

16.3×
o

9.5×
o

3.2×
o

Overhead above Forward Pass

Unrolling

Unrolling MallocCoalescing PreOptimization

Allocator Recompute InlineCacheABI

SpecPHI PreOptimization

CacheLICM Inlining PreOpt

Templating PHI LoopBound PreOptimization

Ablation Analysis of Optimizations
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Forward (1x) 10x 100x 1000x OOM

XSBench

RSBench

LULESH

LBM

DG (CUDA)

DG (ROCm)
5.4×
o

1378.3×
o

116.6×
o

17.8×
o

19.87×
o

8.7×
o

6.4×
o

2979.1×
o

2.4×
o

2.0×
o

6372.2×
o

9.5×
o

4.7×
o

25.9×
o

16.3×
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GPU AD is Intractable Without Optimization!



       Enzyme-Powered Applications
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from Efficient Differentiation of Pixel Reconstruction Filters for Path-Space Differentiable Rendering, 
SIGGRAPH Asia 2022, Zihan Yu et al

Target Reconstruction

from Comrade: High Performance Black-Hole Imaging JuliaCon 2022,  
Paul Tiede (Harvard)

>100x speedup! 
 
Prior: 
  5 days (cluster) 

Enzyme-Based:

 1 hour (laptop)

from CLIMA & NSF CSSI: Differentiable programming in Julia for Earth system modeling 
(DJ4Earth) from Center for the Exascale Simulation of Materials in Extreme Environments

from MFEM Team at LLNL

from Differential Molecular Simulation with Molly.jl, EnzymeCon 2023, 
Joe Greener (Cambridge)

https://dl.acm.org/doi/pdf/10.1145/3550454.3555500
https://live.juliacon.org/talk/3LHDTD
https://clima.caltech.edu/
https://dj4earth.github.io/
https://dj4earth.github.io/
https://computing.mit.edu/cesmix/
https://www.llnl.gov/news/doe-funds-llnl-project-improve-differentiation-extreme-scale-science-applications
https://enzyme.mit.edu/conference


The HPC Landscape Today

• Cutting-edge scientific computing requires efficiently leveraging parallelism


• Multicore chips


• Distributed clusters


• Accelerators (e.g. GPUs, TPUs)

41



Case Study: Parallel Vector Normalization

//Compute magnitude in O(n) 
double mag(double[] x); 

//Compute norm in O(n^2) 
void norm(double[] out, double[] in) { 

  for (int i=0; i<n; i++) { 
    out[i] = in[i] / mag(in); 
  } 
}

42

N = 64M



Case Study: Parallel Vector Normalization

//Compute magnitude in O(n) 
double mag(double[] x); 

//Compute norm in O(n^2) 
void norm(double[] out, double[] in) { 

  for (int i=0; i<n; i++) { 
    out[i] = in[i] / mag(in); 
  } 
}

43

   Serial Running time:      0.312 s

N = 64M



Case Study: Parallel Vector Normalization

//Compute magnitude in O(n) 
double mag(double[] x); 

//Compute norm in O(n^2) work 
void norm(double[] out, double[] in) { 

  parallel_for (int i=0; i<n; i++) { 
    out[i] = in[i] / mag(in); 
  } 
}

44

   Serial Running time:      0.312 s

N = 64M

A parallel loop replaces 
the original serial loop
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//Compute magnitude in O(n) 
double mag(double[] x); 

//Compute norm in O(n^2) work 
void norm(double[] out, double[] in) { 

  parallel_for (int i=0; i<n; i++) { 
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}
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N = 64M

18-core Running time:   180.657s

A parallel loop replaces 
the original serial loop



Case Study: Parallel Vector Normalization

//Compute magnitude in O(n) 
double mag(double[] x); 

//Compute norm in O(n^2) work 
void norm(double[] out, double[] in) { 

  parallel_for (int i=0; i<n; i++) { 
    out[i] = in[i] / mag(in); 
  } 
}

46

   Serial Running time:      0.312 s

N = 64M

18-core Running time:   180.657s

  1-core Running time: 2600.287s

A parallel loop replaces 
the original serial loop



Why the Parallel Slowdown?

47

CodeGenParallel 
Lower Optimize

Frontend directly translates 
parallel language constructs



Compiling Parallel Code

48

void norm(double[] out, double[] in) 
{ 
  struct args_t args = { out, in }; 
  __cilkrts_pfor(body, args, 0, n); 
} 

void body(struct args_t args, int i) 
{ 
  double *out = args.out; 
  double *in = args.in; 
  out[i] = in[i] / mag(in); 
}

void norm(double[] out, double[] in) 
{ 
  parallel_for (int i=0; i<n; i++) { 
    out[i] = in[i] / mag(in); 
  } 
}

Parallel 
Lower



Compiling Parallel Code
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void norm(double[] out, double[] in) 
{ 
  struct args_t args = { out, in }; 
  __cilkrts_pfor(body, args, 0, n); 
} 

void body(struct args_t args, int i) 
{ 
  double *out = args.out; 
  double *in = args.in; 
  out[i] = in[i] / mag(in); 
}

void norm(double[] out, double[] in) 
{ 
  parallel_for (int i=0; i<n; i++) { 
    out[i] = in[i] / mag(in); 
  } 
}

Parallel 
Lower

X
The compiler doesn’t understand the  
parallel runtime and cannot move mag



Compiling Parallel Code (Realistic)
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int fib(int n) { 
  if (n < 2) return n; 
  int x, y; 
  x = spawn fib(n - 1); 
  y = fib(n - 2); 
  sync; 
  return x + y; 
}

Parallel 
Lower

int fib(int n) { 
  __cilkrts_stack_frame_t sf; 
  __cilkrts_enter_frame(&sf); 
  if (n < 2) return n; 
  int x, y; 
  if (!setjmp(sf.ctx)) 
    spawn_fib(&x, n-1); 
  y = fib(n-2); 
  if (sf.flags & CILK_FRAME_UNSYNCHED) 
    if (!setjmp(sf.ctx)) 
      __cilkrts_sync(&sf); 
  int result = x + y; 
  __cilkrts_pop_frame(&sf); 
  if (sf.flags) 
    __cilkrts_leave_frame(&sf); 
  return result; 
} 

void spawn_fib(int *x, int n) { 
  __cilkrts_stack_frame sf; 
  __cilkrts_enter_frame_fast(&sf); 
  __cilkrts_detach(); 
  *x = fib(n); 
  __cilkrts_pop_frame(&sf); 
  if (sf.flags) 
    __cilkrts_leave_frame(&sf); 
}



Idea: New Parallel Compilation Pipeline
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CodeGenParallel 
Lower Optimize

CodeGenParallel 
Lower Optimize

New IR that encodes parallelism for optimization!



Parallel IR: A Bad Idea?

From “[LLVMdev] LLVM Parallel IR,” 2015:

• “[I]ntroducing [parallelism] into a so far ‘sequential’ IR will cause severe breakage and 

headaches.”

• “[P]arallelism is invasive by nature and would have to influence most optimizations.”  

Other communications, 2016–2017:

• “There are a lot of information needs to be represented in IR for [back end] 

transformations for OpenMP.” [Private communication]

• “If you support all [parallel programming features] in the IR, a *lot* [of LOC]…would 

probably have to be modified in LLVM.” [[RFC] IR-level Region Annotations]



Example Previous Parallel IR

entry

join

  rv = phi [ n, entry ], [ add, join ] 
  ret rv

exit

  br (n < 2), exit, if.else

 forkif.else

  x = fib(n - 1) 
  br join

• Previous CFG-based parallel IR’s represented 
tasks symmetrically. 

int fib(int n) { 
  if (n < 2) return n; 
  int x, y; 
  x = spawn fib(n - 1); 
  y = fib(n - 2); 
  sync; 
  return x + y; 
}

  y = fib(n - 2) 
  br join

  join 
  add = x + y 
  br exit

Problem: The join block breaks implicit 
assumptions made by the compiler.


Example: Values from all predecessors of a 
join must be available at runtime [LMP97]. 



Tapir: Task-Based Asymmetric Parallel IR

entry

cont

  rv = phi [ n, entry ], [ add, cont ] 
  ret rv

exit

  x = alloca int 
  br (n < 2), exit, if.else

 detach det, contif.else

  x0 = fib(n - 1) 
  store x = x0 
  reattach cont

  y = fib(n - 2) 
  sync 
  x1 = load x 
  add = x1 + y 
  br exit

• Tapir models parallel tasks asymmetrically via 
three new instructions: detach, reattach, and sync


• The successors of a detach may run in parallel.


• Code after a sync is guaranteed to have completed 
previously detached tasks.


• Tapir simultaneously represents the serial and 
parallel semantics of the program.


det



Tapir: Task-Based Asymmetric Parallel IR

entry

cont

  rv = phi [ n, entry ], [ add, cont ] 
  ret rv

exit

  x = alloca int 
  br (n < 2), exit, if.else

 detach det, contif.else

  x0 = fib(n - 1) 
  store x = x0 
  reattach cont

  y = fib(n - 2) 
  sync 
  x1 = load x 
  add = x1 + y 
  br exit

• Reasoning about parallelism is a minor change to reasoning about the serial projection.

det

entry

cont

  rv = phi [ n, entry ], [ add, cont ] 
  ret rv

exit

  x = alloca int 
  br (n < 2), exit, if.else

 br detif.else

  x0 = fib(n - 1) 
  store x = x0 
  br cont

  y = fib(n - 2) 
  noop 
  x1 = load x 
  add = x1 + y 
  br exit

det



Maintaining Correctness

entry

cont

  rv = phi [ n, entry ], [ add, cont ] 
  ret rv

exit

  x = alloca int 
  br (n < 2), exit, if.else

 detach det, contif.else

  x0 = fib(n - 1) 
  store x = x0 
  reattach cont

  y = fib(n - 2) 
  sync 
  x1 = load x 
  add = x1 + y 
  br exit

Problem: How does the compiler ensure that code 
motion does not introduce a determinacy race into 
otherwise race-free code?


● Consider moving memory operations around each 
new instruction.


● Moving code above a detach or below a sync 
serializes it and is always valid.


● Other potential races are handled by giving 
detach, reattach, and sync appropriate attributes 
and by slight modifications to mem2reg.

det



Maintaining Correctness

entry

cont

  rv = phi [ n, entry ], [ add, cont ] 
  ret rv

exit

  x = alloca int 
  br (n < 2), exit, if.else

 detach det, contif.else

  x0 = fib(n - 1) 
  store x = x0 
  reattach cont

  y = fib(n - 2) 
  sync 
  x1 = load x 
  add = x1 + y 
  br exit

Problem: How does the compiler ensure that code 
motion does not introduce a determinacy race into 
otherwise race-free code?


● Consider moving memory operations around each 
new instruction.


● Moving code above a detach or below a sync 
serializes it and is always valid.


● Other potential races are handled by giving 
detach, reattach, and sync appropriate attributes 
and by slight modifications to mem2reg.

det

Serial optimization passes 
do not create bugs!



      Vector Normalization with a Parallel-Aware Compiler

//Compute magnitude in O(n) 
double mag(double[] x); 

//Compute norm in O(n^2) work 
void norm(double[] out, double[] in) { 

  parallel_for (int i=0; i<n; i++) { 
    out[i] = in[i] / mag(in); 
  } 
}

58

   Serial Running time:      0.312 s

N = 64M

18-core Running time:      0.081 s

  1-core Running time:      0.321 s

A parallel loop replaces 
the original serial loop Great work efficiency! 

TS / T1 = 97%



      Vector Normalization with a Parallel-Aware Compiler
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Polygeist: Extending Parallel IRs beyond Multicore
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• Good IR representations are especially necessary 
for device-specific constructs, like GPU 
syncthreads


• Necessary for good performance, but 
complexity means they’re often used poorly


• General abstracts can enable code written in 
one framework to be used and high-
performance on many others without rewriting


• Recompiled PyTorch’s GPU backend to 
produce an efficient CPU backend that runs 
2.7x faster than PyTorch’s native CPU code!



Revisiting The Programmer’s Burden
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Revisiting The Programmer’s Burden (published at SC22)

62



Conclusions
• Explosion of specialized software packages and hardware architectures -> scientists spending more 

time learning how to optimize programs and use platform-specific API’s than working on their intended 
problem.


• Rather than burdening the user, compilers can automatically generate fast, portable, and composable 
code.


• Enzyme generates fast derivatives of programs needed for science and machine learning, without 
user rewriting 

• Tapir understands the parallelism within programs, enabling existing optimizations to apply with 
minimal modification. Polygeist extends these ideas to GPU programs and enables write-once run-
anywhere.


• All these tools are open source and used in academia and industry and in disciplines that range from 
climate science to physics to material science
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Conclusions

• Explosion of specialized software packages and hardware architectures -> scientists spending 
more time learning how to optimize programs and use platform-specific API’s than working on 
their intended problem.


• Rather than burdening the user, compilers can automatically generate fast, portable, and 
composable code.


• Enzyme generates fast derivatives of programs needed for science and machine learning, 
without user rewriting 

• Tapir understands the parallelism within programs, enabling existing optimizations to apply 
with minimal modification.


• All these tools are open source and used in academia and industry and in disciplines that range 
from climate science to physics to material science
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