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Motivation |

Complex geometry is still a key challenge in engineering simulations

= Engineering designs are often characterized by
geometric complexity

= The merging of topology optimization and advanced
manufacturing (e.g., additive manufacturing) may
exacerbate this trend

Structural joint (welded)  Structural joint (3D-printed)

Geometric model of a
vascular stent
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Motivation Il

Imaging-to-computing, an emerging field:

An efficient transition from geometries reconstructed from images to
computation may impact and transform many fields of application:

» Biomedical engineering: CT-scans are given as pixilated data or STL
format (collections of triangular facets and their nodal coordinates).
Body-fitted meshing can be quite hard to perform.

» Subsurface imaging and computing (meshing requires considerable
effort in reservoir engineering applications)

= Additive manufacturing simulations (e.g., 3D-printing). The typical
file format for 3D-printers is again STL

In these examples the geometric information is not very precise
and/or consistent (surfaces with gaps and overlaps, typical of
computer graphics, STL = set of disconnected triangular faces)




Overview

Two commonly used computational strategies:

il

Body-fitted grids. The grid conforms to the boundary geometry of
the shape to be simulated.

= Advantages: Easier treatment of the boundary conditions (and
boundary layers)

= [imitations: Requires more advanced meshing for complex geometry, or
re-meshing in problems with large deformations

Embedded/immersed grids. The shape to be simulated is fully or
partially embedded (or immersed) into a regular background grid.

= Advantages: Generality of the method, especially if coupling
heterogeneous computational frameworks, rapid prototyping

= Limitations: More complex enforcement of boundary conditions




Existing Embedded Boundary Methods
Unfitted Finite Element Methods (excluding GFEM-XFEM)

* Embedded methods of finite element type (a.k.a. cutFEMs, unfitted FEMs,
Finite Cell Method, Embedded Splines, IGA-Immersogeometric etc.) often
rely on XFEM methodologies to integrate on cut cells, Inverse Lax-
Wendroff procedure (DG) [Burman, Hansbo, Larson, Massing, Cirak,
Kamenski, Schillinger, Yan, Parvizian, Duster, Rank, Wall, Annavarapu,
Dolbow, Harari, Badia, Rossi, C-W. Shu, Masud, et. al., etc.]

» Unfitted/embedded FEMs typically utilize Lagrange multipliers or Nitsche
variational formulations

= CutFEMs/unfitted FEMs require data structures and special quadratures to
integrate on geometrically complex cut cells

= The small cut-cell problem: Integration over cut cells introduces additional
interface degrees of freedom that may yield stability problems, very small
time-steps or poor matrix conditioning. [Burman & Hansbo Appl. Num.
Math. (2012)]. Solution: ghost penalty, and related methods



Overview of the Shifted Boundary Method

Key ideas: [with Alex Main at Duke University: the origins of the method]

= Use a purely embedded approach
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Overview of the Shifted Boundary Method

Key ideas: [with Alex Main at Duke University: the origins of the method]

= Use a purely embedded approach
= Use the Nitsche framework to impose boundary conditions weakly

= Apply boundary conditions on a surrogate boundary, near the true boundary

= Appropriately modify the boundary condition to account for the discrepancy
between surrogate and true boundary




The Shifted Boundary Method (SBM)

The extension map M & a distance vector function d
M:T->T
X— X
dy(X) =x-% = [M-T]X)

Extension of functions defined on boundaries:

Y(X) = Y(M(%))

;”closest point
projection:
d=|d|n

[with Alex Main at Duke University: the origins of the method]



The (Base) Nitsche Method

A prototypical example: The Poisson problem

Strong form of the equation I

Au+f= 0 on )
u= g on I' = 00

Augmented Lagrangian formulation

/QVw-Vu :/wa

Nitsche’s formulation \ \
ou ow
/Vw-Vu— W — — —(u—g)+/aw(u—g):/wf
Q r Q

T 877/ T 871

[with Alex Main at Duke University: the origins of the method]



The Shifted Nitsche Method

A prototypical example: The Poisson problem

Weak form of the equation with weak boundary conditions (Nitsche method):

Surrogate computational domain

[with Alex Main at Duke University: the origins of the method]



The Shifted Nitsche Method

A prototypical example: The Poisson problem

Weak form of the equation with weak boundary conditions (Nitsche method):

/Vw Vu — w%— ! /aw(u /

/QVw-Vu— wg—u— +Vu d— g})—k/r (uHVu-d—g)]:/wf

n Q

N [' = 01}

Surrogate computational domain

[with Alex Main at Duke University: the origins of the method]



Numerical Results: Poisson Problem

Numerical convergence test with an exact solution on a circular domain

Aut+1=0 on® L2 norm of the error (linear FEMs)

- Without Talylor expansién (linear)

U‘F —1()

-
-
-
-
-
v

1
Exact solution: u = Z(RQ =

-
-
-
L o 2
-
ot

100000 . —
Matrix condition number
o ——With Extrapolation
X ——Without Extrapolation
10000 g —o=Second Order
BOd 'fltted FEM \ . —o=First Order E
y ~_SBM
1000 With Taylor expansion (quadratic)
h_z S/Ope 0.0031 3 Mg:;::[ﬂ 0.025
100 | Condition number (estimated!):
| I » About 3 times larger than for the
body-fitted method
Conformal Method
q Shifted Boundary Method ——— ; : 5
B0 - 5.1 = Same scaling with h* has for the

h body-fitted method

[with Alex Main at Duke University: the origins of the method]



Numerical Results: Poisson Problem
[ with Nabil Atallah (at Duke) & Claudio Canuto, Math. Dept., Politecnico di Torino ]

Exact solution (manufactured): Piecewise-linear triangular finite elements
u(x,y) :ySIH(Zﬂ'X)—XCOS(zﬂ'y) 10_2 T T T T T T T T T T T T
- | —e— SBM al
| i ul ur m mn i a s Al : " bOdy-ﬁtted :
- b1 | L i
>“ 107 | Ei
197 = E
| b1=0.6 - i
“ | / |
| b2— 0.4 10—5 ; 7 ;
: S=1 \:HH\ ! Ll Lol Lol | \1[\\!\;
o 1073 102 g 10°
| h
v
- ) No. of surrogate edges
f—— by —— Mesh Size with v- 1 < 0 % of total surrogate edges
4.00E-02 1 4.35%
2.00E-02 1 2.33%
1.00E-02 5 5.43%
5.00E-03 9 5.06%
2.50E-03 23 6.35%
1.25E-03 38 5.38%




The SBM for Domains with Corners
[ with Nabil Atallah (at Duke) & Claudio Canuto, Math. Dept., Politecnico di Torino ]

Solution: Consider a surrogate edge E with i as its unit normal.

Tq
B &5
Lq 1
1
I, Iy Lq
F1 nll I‘1 nll Fl
~ < e
no n2 ny
FQ FQ FQ

Im = argmax f(I's) where f(T's) = 32, , 7 nr, ().

The three-dimensional case is similar

N. Atallah, C. Canuto, G. Scovazzi, “Analysis of the Shifted Boundary Method for the
Poisson problem in domains with corners,” Mathematics of Computation



Numerical Analysis: Poisson Problem

Coercivity of the SBM variational form

We have a coercivity estimate:

an(uu") > Cq "7 vu e V() ,
where

™12 = IVe" 5.6 + I1V1/h (u" + Vu" - d)|g



Numerical Analysis: Poisson Problem

Coercivity of the SBM variational form

We have a coercivity estimate:

an(uu") > Cq "7 vu e V() ,
where

™12 = IVe" 5.6 + I1V1/h (u" + Vu" - d)|g

Boundedness (Continuity)
We can also prove continuity (boundedness): V(Q;h) = V*(Q)+V(Q) c H*(Q; T")

2 _ 2 2
al(u,wh) < Carll v la lullvan » 12 1V@m =lvila+hwlg 5

for all w € V(S h) and for all wh € V().



Numerical Analysis: Poisson Problem

Consistency error due to the Taylor expansions:
a(u, w") — 1" (w") = —(w", Au+ Pa — (\/Eth -1,/ 1/h)g
0
+ (av/1/h (wh + Vuw - d), \/l/h)fD

23/
< Cppr ||lw"||ahs, hf/D IV(Vu)llo,e -



Numerical Analysis: Poisson Problem

Consistency error due to the Taylor expansions:
a(u, w") — 1" (w") = —(w", Au+ Pa — (\/Eth -1,/ 1/h)g
N——

0
+ (av/1/h (w" + Vo' - d), \/1]h)z,

< Cpper ||[w"||ahz,, ﬁ%/; IV(Vu)llo,e -

Optimal convergence estimate in the energy norm (using Strang’s second lemma)

HaZHV(h) Vh(£) ;
|uuh||v@;h>s<1+ > it flu— "y

wheVh(Q)
1 h(wh) — oh h
c Ly P0M bty
Ca whevh(f)) Hw ||V(Q;h)

< Chg ([[V(Vu)lon)



Numerical Analysis: Poisson Problem

Consistency error due to the Taylor expansions:

ah(u, wh) — lZ(wh) = —(wh,Au+ Pa — (\/Eth ‘T, \/1/h>fD
\—\’—/

u

0
+ (av/1/h (w" + Vo' - d), \/1]h)z,

< Cpper ||[w"||ahz,, ﬁ%/; IV(Vu)llo,e -

Optimal convergence estimate in the energy norm (using Strang’s second lemma)

HaZHV(h) Vh(£) ;
lu—u” “V(Q;h) < (1 + O - inf _fu—w" HV(fl;h)

wheVh(Q)
1 h(wh) — oh h
c Ly P0M bty
Ca whevh(ﬁ) Hw ||V(Q;h)

< Chg ([[V(Vu)lon)

Suboptimal (not in practice!) duality (L2) estimate: |u — UhHO;Q < Cp h%/Q IV(Vu)llo



Numerical Analysis: Stokes Flow Problem

[ with Nabil Atallah (at Duke) & Claudio Canuto, Math. Dept., Politecnico di Torino ]
Stability (LBB)

BW", p"1; ", ¢"D) = arss iU, P12 IW". ¢"1112

An LBB inf-sup condition can be derived in the case of the Stokes’ operator

Convergence (in natural norm)
I [, p1 - [&", p"1llwen < C he (IIV(Vu)IIo,Q £ IIVpllo,fz)

The proof is analogous to the one for the Poisson problem, using the inf-sup LBB condition
and Strang’s second lemma.

Duality estimates (L?-estimates for the velocity field)
le — w5 < Co B2 (IV(Va)ll g + IV Pl )

Analogous but more complicated proof than in the Poisson case. We observe quadratic
convergence for the velocity, in practical calculations

Similar results hold for the Darcy flow equations (mixed-Poisson)



Numerical Analysis: Linear Elasticity

[ with Nabil Atallah (at Duke) & Claudio Canuto, Math. Dept., Politecnico di Torino ]
Stability (coercivity by Korn’s inequality)

B, " ", ") 2 gy, 11 1", €112, 5

1] [u”, €112

SBM

= (1-1,/2) |IC"? Viul|?
+(1-1,) (||c1/2eh||

7 IC2 V2 o+ 7 o (172 11

1/2 x7,,h2
2, IRV )

0;0,\

-1/2 12
HIRZCPEEL Y+l 22V CEMILy, + o H S w12

0:Q 0:lp

Convergence (energy norm)

11 Leys €1 g S P2 (hg,,|u|2;gh +he,, ula\a, + 0 1€ |€|z;fz§>

Optimal convergence is achieved.

Convergence (L2-estimates for the displacement field)
3 =112 +.3/2 1r8 ol

lewllo, S P P By 1€ (g + lelra)

We observe quadratic convergence for the displacement, in practical calculations



Porous Media Flow (Mixed Formulation)

Original geometry

[with Nabil Atallah and in collaboration with G. Katul,
CEE, Duke University]

A'B+Vp=0 inQ
V-B=¢ inQ
p=pp onlp

p-n=hy only



Porous Media Flow (Mixed Formulation)

setup time < 1 minute

Surrogate geometry

[with Nabil Atallah and in collaboration with G. Katul,
CEE, Duke University]

A'B+Vp=0 inQ
V-B=¢ inQ
p=pp onlp

p-n=hy only



Porous Media Flow (Mixed Formulation)

Solution (flux)

[with Nabil Atallah and in collaboration with G. Katul,
CEE, Duke University] p=pp onlp




The Shifted Boundary Method

Convergence test (Navier-Stokes): Decelerating cylinder test

Exact solution:
/ﬁ
7 N\ 0 C iwp e
ug (r,t) = — ). T r e
7 L (J52w)

—a— With Extrapolation

\u 7// 0.003125 0.0125 0.05

\ 10
\__/
4-/ —a— Without
/g 1 Extrapolation
With Extrapolation Without = = = First Order
Extrap. @)
Mesh Size | 2" order 1%t order = 0.1
0.05 0.1338 2548 ,48 = = Second Order
0.025 4.143 * 101-2 0.9565 N~ 0.01
;_‘ .
0.0125 1.067 * 107-2 0.4761 )
0.00625 | 3.422* 107-3 0.265 =
0.003125 9.576 *10/-4 0.1404 aa 0.001
K 1.78 1 :
Mesh Size
0.0001

[with Alex Main at Duke University: the origins of the method]



Turbulent Flows

Formulations based on turbulent viscosities:
Findu € VH(Q) and p € Q"(Q) such that, Yu € V*(Q) and Vg € QM (Q),

0 = NS[u + url(u, p;w,q) + STAB[u + url(u, p;w, q)

= Spalart-Allmaras (SA) model with the Shifted Boundary Method are very
similar to the Navier-Stokes equations

» |mplicit LES is performed through the VMS stabilization/modeling approach

Wall model for the velocity boundary conditions: g Tw
{ G ’
u=g—Vu-d = U =g — Uyqu(d,Vu,...) P
1 yt= =
ut = Zlogyt +C™* P
& u
ut = —,
uT

[with Alex Main at Duke University: the origins of the method]



Flow Over a Circular Cylinder

A classical test to validate algorithms for laminar/turbulent flow

Re St (vs. reference) Cp (vs. reference) | Reference source
20 - 2.09 (1.99) [7]

100 | 0.167 (0.164,0.157) | 1.35(1.34) [7, 39]

300 | 0.211(0.203, 0.215) | 1.38 (1.37) [39]

3900 | 0.203 (0.203) 1.04 (1.00) [7]

l7] Beaudan & Moin (1995)

1.5

Cp =143
- D
St = — = 0.206
U

0.5

-0.5

1 1
0 10 20 30 40 50

Lift coefficient, Re = 250



Flow Over a Circular Cylinder at Re=3,900

A classical test to validate algorithms for turbulent flow simulation

Q-criterion isosurfaces (used to visualize vortex structures)

[with Alex Main at Duke University: the origins of the method]



Flow Over a Circular Cylinder at Re=3,900

A classical test to validate algorithms for turbulent flow simulation

Q-criterion isosurfaces (used to visualize vortical structures)

[with Alex Main at Duke University: the origins of the method]



A More Complicated Shape at Re=3,900

A differential geometry monster (the Monkey Trefoil)

[with Alex Main at Duke University: the origins of the method]



A More Complicated Shape at Re=3,900

A differential geometry monster (the Monkey Trefoil)

About 25 million elements
Setup (in parallel) ~ 1 minute!

Q-criterion isosurfaces (used to visualize vortical structures)

[with Alex Main at Duke University: the origins of the method]



The SBM for Solid Mechanics

An alternative cycle to CAD-Meshing-Computing

Original geometry



The SBM for Solid Mechanics

An alternative cycle to CAD-Meshing-Computing

The background domain



The SBM for Solid Mechanics

An alternative cycle to CAD-Meshing-Computing

The background domain and the immersed original geometry



The SBM for Solid Mechanics

An alternative cycle to CAD-Meshing-Computing

The initial set of active elements (with boundary conditions sidesets)



The SBM for Solid Mechanics

Displ_ Z
-2.027e-01 -0.15 0.1 -0.049 2.688e-03

WI‘IIIIII}IIIIIIXIIJW

Deformed configuration of the set of active elements



The SBM for Solid Mechanics

An alternative cycle to CAD-Meshing-Computing

The intersection of the immersed geometry with the grid



The SBM for Solid Mechanics

An alternative cycle to CAD-Meshing-Computing

Deformation of the intersected immersed geometry



Credit of SBM for Solid Mechanics

Ph.D. thesis of Nabil M. Atallah



The SBM for Solid Mechanics

Key challenges:

Imposition of traction (Neumann) boundary conditions

Numerical stability of Neumann conditions

Effect of geometric complexity (edges/corners, etc.) on numerical stability

Computational cost vs. standard Finite Element Method



Static linear elasticity problem
O=b+V- -0(V'u (governing eq.)
u = Up (displacement BCs)

c(V'u)n =t, (traction BCs)
= 0 for piecewise linear fcn.s

o(e)=Ce Viu=1/2(Vu+ V'u)

Neumann [Traction] BC

Idea: Recast the linear elasticity problem in mixed form:
O=b+V -0(g) (governingeq.)

) ¢ = V'u (strain eq.)

u+ (Vud = U (displacement BCs)

(6 +Vod)n=(Ce+[V(Ce)d)n = t, (traction BCs)
70




Efficient Implementation of SBM for Solid Mechanics

Apply the mixed formulation only on a layer one-element thick

Ny————"—"— Ae—m—— o F
\ %

/' 1=V -06(V°u) = b Primal
/ N /
// '\ \\ /T . N 7 \\ ,/

K \\ \\‘ K \\ ,/ \\\ // ~

c(V'u)" n* +o(e) n” = 0| —V-o6(e)= b e FL./z

AN ! \

e—Vu=90

| |




The SBM for Domains with Corners

How to handle multiple boundary conditions near corners/edges?

927"

t

g3

True domain and boundary

<A <
AT vy

AV
THAKRT
AN

SRR

Mapping boundary conditions

>
193



Cook’s Membrane (Compressible Elasticity)

16

\4

Young’s modulus E = 200 - 10° Pa and Poisson’s ratio v = 0.3.



Cook’s Membrane (Compressible Elasticity)

Tip displacement convergence

A

1.7 w .

1.6 — Reference value n

==e== Body-fitted, primal
m=e== SBM formulation

Vertical displacement at point A

15 | | | |
0 500 1,000 1,500 2,000 2,500

n

( i) ( i) (b) Vertical displacement at point A, where # is the total
u + V u d A number of edges along .S, U.S,, for the primal body-fitted
y y A {5

formulation, or the total number of edges along S, U S,




Three-Dimensional Performance Assessment

Young’s modulus= 200.10° MPa

Poisson ratio = 0.3

H =35

Boundary conditions

= Strong enforcement of
Dirichlet conditions on
outer boundary

= Traction conditions on
inner boundaries
/7

=3 Original geometry
. i — cos(zwx) sin(zwy) cos(xz)
S u, ¢ =—1 sin(zx/7)sin(zy/3)cos(xz/5) ¢
4 10 .
U, sin(rxyz/2)




Three-Dimensional Performance Assessment

I
- | —o— Body-fitted
| | —s— SBM
10_1 = ]
1072 - -
” e “L2 = \/f' uh — Uexact |2ﬁ
T l | I | ‘ l l | I I I | l l | I B il
1073 1072 10! 109

h

L2-error vs mesh size

llu = ullo.q

I
—o— Body-fitted
107 |+ —o— SBM
10|
10—2
ui | | | L |
10° 10! 10? 103

Computing time (sec.)

L2-error vs computing time

SBM costs you like a standard body-fitted FEM, but... ho meshing overhead




No body force

Boundary conditions
= y=0 (left),
= y={2.5y,-2.5%, -0.5}(right)
= Traction free BC at all other
boundaries

Poisson ratio = 0.452

Surrogate domain



Pulling/Twisting of Three-Dimensional Stent

Solution (displacement)
0.00e+00 3.80e+00

MM”"‘M




Compression of 3D Porous Rock Specimen

Rock REV: L =0.505, W =0.3, D = 0.27

No body force
Boundary conditions

= y=0 (bottom),

= y=-5E-04 (top)

= Traction free BC at all
other boundaries

Poisson ratio = 0.452

Total elements = 5.2 million
Total active elements = 3.46 million

Total cores = 240

Original geometry



Compression of 3D Porous Rock Specimen

Rock REV: L =0.505, W =0.3, D = 0.27

Setup time:

= Compute intersection between
STL surface and background grid.

= Generate surrogate domain
and boundaries.

= (Calculate distance vector d.

Setup time = 220 seconds!

Surrogate domain (blue)



Compression of 3D Porous Rock Specimen

Rock REV: L = 0.505, W =0.3, D = 0.27

Setup time:

= Compute intersection between
STL surface and background grid.

= Generate surrogate domain
and boundaries.

= (Calculate distance vector d.

Setup time = 220 seconds!

Solution
(displacement)



Compression of 3D Porous Rock Specimen
Rock REV: L =0.50 |

A
w3

¥

No body force

Boundary conditions
= u =0 (left),
= u=-5E-04 (right)
= Traction free BC at
other boundaries

Original geometry A



Compression of 3D Porous Rock Specimen

Rock REV: L =0.505, W =0.3, D =0.27

No body force

Boundary conditions
= u =0 (left),
= u=-5E-04 (right)
= Traction free BC at all
other boundaries

J, stress



Compression of 3D Porous Rock Specimen

Rock REV: L =0.505, W =0.3, D =0.27

No body force

Boundary conditions
= u =0 (left),
= u=-5E-04 (right)
= Traction free BC at all
other boundaries

J, stress along X-Y plane



Compression of 3D Porous Rock Specimen

Rock REV: L=0.505, W=0.3,D=0.27
No body force

Boundary conditions
= u=0(left),
= u=-5E-04 (right)
= Traction free BC at all
other boundaries

J, stress along X-Z plane



Compression of 3D Porous Rock Specimen

Rock REV: L=0.505, W=0.3, D=0.27
No body force

Boundary conditions
= u =0 (left),
= u=-5E-04 (right)
= Traction free BC at all
other boundaries

J, stress along Y-Z plane



SBM Simulations of Thermo-Mechanics

“Sponge-like” boundary test

Geometry Surrogate boundary

Fixed temperature + clamped displacements

traction-free + flux free

63



SBM Simulations of Thermo-Mechanics

“Sponge-like” boundary test

10.6 106
10.2 102
10 - 10
9.8 9.8
9.6 9.6
9.4 9.4

— 9.2 9.2

9 1,
88 8.8
8.6 8.6
8.4 _ 84
Temperature T, t = 5.03

9 " 8 —8
7.8 _78
7.6 7.6
7.4 B
7.2 7.2

L 7 L7
68 68
6.6 6.6
64 64
6.2 6.2

6 6
5.8 5.8
5.6 5.6
54 5.4
52 5.2
5.03 5.03
126 126
125
124 124
123 123
122 22
123 121
12 12
- 119 L e
~ s i
M n7
e 16
15 ns
— 14 B
~-13 L i
Temperature T, t = 10 iz s
5 — L i
“n B
109 | 100
108 L 108
10.7 107
10.6 10.6
- 105 105
104 104
103 103
102 10.2
10.1 101
9.95 9.95

64



SBM Simulations of Thermo-Mechanics

“Sponge-like” boundary test

Displacement u, t = 5.03

Displacement u, t = 10

65



SBM Simulations of Thermo-Mechanics

Simulation on a complex structure (Naval Research Laboratory):

- _Geometry

traction-free BCs +
fixed normal heat flux BCs §

Initial temp;
reference valu
the value of the

Fixed temperature BCs + clamped displacements



SBM Simulations of Thermo-Mechanics

Simulation on a complex structure (Naval Research Laboratory):

Temperature

51.7 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500.

traction-free BCs +
fixed normal heat flux BCs

Initial temperature set to a

reference value, different
from the value of the
temperature BC

N

\ Fixed temperature BCs + clamped displacements



SBM Simulations of Thermo-Mechanics

Simulation on a complex structure (Naval Research Laboratory):

Displacement, x-component

0 -100 -90 -80 -70 -60 -50 -40 -30 0 20 30 40 50 60

L rese—— ' ' "




SBM Simulations of Thermo-Mechanics

Simulation on a complex structure (Naval Research Laboratory):

Displacement, y-component
30 ~2]5j -20 -15 -10 5 0 tl') 10 15 20 25 30




SBM Simulations of Thermo-Mechanics

Simulation on a complex structure (Naval Research Laboratory):

Displacement, z-component

50 60 70 90 100 110 0 13 140 150 160 170 180 190 200 210 218
| |

U eee——




The Shifted Fracture Method

[Collaboration with Antonio Rodriguez-Ferran Universitat Politecnica de Catalunya]

The Shifted Fracture Method (SFM) in a nutshell:

= An attempt to overcome the challenges in the X-FEM/G-FEM/PU-FEM approach
maintaining a comparable accuracy

= A surrogate fracture is introduced and constituted of edges/faces of the mesh that
are in some sense close to the true fracture

= Fracture interface conditions are computed on the surrogate fracture

= The value of interface conditions is shifted (or perturbed) by means of Taylor
expansions, to preserve accuracy and avoid mesh dependencies

Advantages of the Shifted Fracture Method:

= No cut cells: simplified data—structure and quadratures
= No small-cut cell problem affecting stability and matrix conditioning
= SFM solutions are mesh independent, unlike node-release techniques

= Continuous representation of the fracture surface in three dimensions



Credit for Shifted Fracture Method &

Thermomechanics
e

Ph.D. thesis of Kangan Li ( ... looking for jobs)

[in collaboration with Antonio Rodriguez-Ferran
Universitat Politecnica de Catalunya]



Overview: Cohesive Zone Models

Xl=x—x" {xb,=4xt+0 -y
Governing equations

Linear elasticity in mixed form
O0=b+V-0(e),

£ =Viu.

Cohesive zone model [Pandolfi-Ortiz, INME 44 (1999)]
CZMs were initially proposed by Dugdale, Barenblatt, Hillerborg, Bazant, et al.:
t=t"=o0(e)"-n" =—-06(e)"-n" =-t— onT,

t=t,,(w) onl,

wu)=u —u' = [u]

A r .
(W, t, —Tw,, for0<w, =w"<w,, w* >0,
_ ) * Kk
t, tog(Wey) = 3 o Weq » for0<w, <w*<w,, w" =0,
o 0, forw,, 2 w,, , toon = t,N+1T
) |
I _ n
v : 1 tn - teq(weq) ’
: T wu)= w,n+wT eqw
| 2 S
' ty = P71 (W)
. > — 2 2 15 § eqr-"eq ?
0 w* W, weq weq - \/wn + ﬂ ws weq




Overview: Cohesive Zone Models

X-FEM/PU-FEM variational formulation [Moés-Belytschko or Wells-Sluys]

Variational equations
(Vé,o(E)ayr, + (W, — Vo\r + ([P1: ton)r, — (@, b)oyr, — (P, ty)r, = 0

Euler-Lagrange equations on the fracture surface

{{0'}},1’1 —ton = 0, on Fc Cohesive traction

[cln= 0, on I' | Normal stress continuity/balance

A Ixl=x -1 {xd,=Ar"+A =Dy
teq(weq)

ﬂ

Y



The Cohesive Shifted Fracture Approach

Geometric setting of the Shifted Fracture Approach
Surrogate fracture: the set of edges/faces closest to the true crack (in red)
d: the distance vector of the surrogate crack from the true crack

~

A: the surrogate crack tip, corresponding to A

\ /
| u~ u+Vud,
A o6~ oc+Vod,
A
Fc 4 Iﬂcoh <
T d
ocs d A
Mh . I_‘C -2 1—‘C ’ > Fcoh
LT, n(x) :=n(M,(x))
AV AV AVA 7

Idea of the Shifted Fracture Method: use Taylor expansions to evaluate
approximate fracture conditions on the surrogate fracture

t=t,,w@)=énR|c+Vod)n~ t,,(wu+Vud))| onl,, .




The Cohesive Shifted Fracture Approach

Derivation of the variational equations

Function spaces (piecewise linear FEMs, discontinuous across the surrogate crack)
FHQ\T,) ={ve @\ : v, =up, vipe (P @), VT € J,},
FSHQ\T,) ={w e (C'Q\T )™ : o|re (P TN, 0=0, VT € ,},

YHQ\T) ={ve(C@Q\T))? : vy, =0, v|,€ (P D), VT € F,},
Y rONT =N T

Galerkin projection:
- (¢’ V. 6(5))Q\r’c — (¢’ b)Q\f‘c s
(W’ S)Q\fc = (V” Vsu)Q\fc ’

Integrating by parts ...
(V. o)\, + ([P, fo(e)},n)r,

+({d}i-s [[0'(8)]]ﬁ)f; = (¢, b)g\f“c + (¢, tN)I“N ’




The Cohesive Shifted Fracture Approach

Shifted interface conditions
(V. o()a\r. +([P], fo@},;n)r + ({Phi_,, [o@In)r, = (@, b)a\r, + (P, tx)r,




The Cohesive Shifted Fracture Approach

Shifted interface conditions
(V. o@))a\r. +([P], fo@)},n)r + ({Phi_, [o@In)r, = (@, b)a\r, + (P, tx)r,

{{0(8)}}[ = flo(®)}((n-mn + (n - 7)7)

= (A(%) - 1(X)) {o(e(X) }, A(%) + (A(X) - T(X)) {o(e(X)) }, 7(X)




The Cohesive Shifted Fracture Approach

Shifted interface conditions
(Vo,o(e)q\r. + ([¢], fo®)},n)r + ({d}i_s [o@)Dn)r = (. b)a\r. + (D, tx)r,

fo(e)},n= {o©)}((n-mn+(a-7)7)

= (i(%) - 1(X)) {o(e(X)) }, A(X) + (A(X) - T(X)) {o(e(X)) }, 7(X)

fo(ex)}, n(x) = fon}, = {(6-Vod)n},
=f{t-(Vod)n},=t-{(Vod)},n,




The Cohesive Shifted Fracture Approach

Shifted interface conditions
(Vo,o(e)q\r. + ([¢], fo®)},n)r + ({d}i_s [o@)Dn)r = (. b)a\r. + (D, tx)r,

fo(e)},n= {o©)}((n-mn+(a-7)7)

= (i(%) - 1(X)) {o(e(X)) }, A(X) + (A(X) - T(X)) {o(e(X)) }, 7(X)

{oe(®)}, A%) = {o ), = {5 - Vo d) A},
= {i-(Vod)a}, 51} {(Vod)}, A,

t=t,,w@)~ t,,(wu+Vud)), onl,,




The Cohesive Shifted Fracture Approach

Shifted interface conditions
(Vo,o(e)q\r. +([P], fo®)},n)r [+ ({d}i_s [o@)Dn)r = (. b)a\r. + (D, tx)r,

fo(e)},n= {o©)}((n-mn+(a-7)7)
= (i(%) - 1(X)) {o(e(X)) }, A(X) + (A(X) - T(X)) {o(e(X)) }, 7(X)

o)}, A% = for}, = {(G - Vo d)a},
={i-(Vod)a}, =i} {(Vod)},n, in u+Vad, |

t=t, ,(w@)~ t,,(wu+Vud)), onl,, &= o4-Vod

(L], fo@},n)r |= (@], (- n) (- {(Vo(e)d)},n)+ (@ -7) {o(e)}, T)r
= ([P G- D)1, W+ Vud))r ([Pl @ - 7) ({(Vole)d)};7) - (- 7) {o(e)}, T)r.




The Cohesive Shifted Fracture Approach

Shifted interface conditions

(Vo,o()q\r. +([P], Lo },n)r [+[{({d}i_s [o@)Dn)r | = (. b)a\r. + (D, tx)r,

fo(e)},n= {o©)}((n-mn+(a-7)7)

{o(E()}, A%) =
= {I-(Vod)a}, J1} (Vo d)}, 7,

= (i(%) - 1(X)) {o(e(X)) }, A(X) + (A(X) - T(X)) {o(e(X)) }, 7(X)

fon), = {6 -Vodn},

t=t,,w@)~ t,,(wu+Vud)), onl,,

([P, fo(e) } n)r,

({e}i-s [o@®]a)r,

= ([¢l, (@ -n) (T - {(Vo(e)d)},n)+ (n-7) {o(e)}, T)r,

u~ u+Vud,

6~ oc+Vod,

= ([], G- W)t + Vud))r —([], G- ) ({(Vo(e)d)}, /) — (- 7) {o(e)}, T)r.

=({o}_;, @-n)[6(e) - Vo(e)d]n+ (i - 7) [o(e)] T)r,

=({oh_i, —@-n)[Vo(e)dln+ (- 7)[o(e)] ),
=({o}_;, [o@li - (7 - n) [o(e) + Vo(e)dl ) .



The Cohesive Shifted Fracture Approach

Shifted interface conditions

(Vo,o()q\r. +([P], Lo },n)r [+[{({d}i_s [o@)Dn)r | = (. b)a\r. + (D, tx)r,

fo(e)},n= {o©)}((n-mn+(a-7)7)

= (A(X)

fo(e(x)}, n(x) =

-1(X)) fo(e(X)}, a(%) + (A(X) - T(X)) {o(e(X)}, 7(X)

fon), = {6 -Vodn},

= {i-(Vod)a}, 51} {(Vod)}, A,

t=t,,w@)~ t,,(wu+Vud)), onl,,

([P, fo(e) } n)r,

= (l¢l,(@-n) (1 {(Vo(e)d)},n)+ (- 7) {o(e)}; T)r

u~ u+Vud, |

6~ oc+Vod,

= ([], G- W)t + Vud))r —([], G- ) ({(Vo(e)d)}, /) — (- 7) {o(e)}, T)r.

= ({¢hi_s» (- D[[6()|- Vo@©)d] i+ (i - 1) [0 7).

({e}i-s [o@®]a)r,

=({¢h_i, —(@-n)[Vo(e)dln+ (- 7)[c(e)] )
=({o}_;, [o@li - (7 - n) [o(e) + Vo(e)dl ) .

[6(e)ln=0




The Cohesive Shifted Fracture Approach

X-FEM/PU-FEM vs shifted variational formulations

X-FEM/PU-FEM Euler-Lagrange equations:
fo}y,n—-t.,,=0, onl’,
[cln= 0, onl’,

Shifted Fracture Method Euler-Lagrange equations:
|§ﬁ -n) ({S(c)},n—t,,,(w(Sw)) =0, onI", |Cohesive EraetisR ereAmersaction

- ~ (ensures grid independence
SoE)n= 0, onI’, |Traction equilrigfire energy)

X-FEM/PU-FEM weak form:
(V¢9 G(£))§2\Fc g3 (‘I’a &€ — Vsu)Q\Fc + ([[‘p]]a tcoh)I"C - (¢9 b)Q\Fc - <¢’ tN)FN =0

Shifted Fracture Method weak form (VMS stabilization terms omitted):

(V.0 )arr +W.e = VU)o + ([], @ - m) 1, (wu+ Vud))y

+ (@1, fo(e)} ;i — {o(e) + Vo(e)d} (7 - n)n).

+{({}i_s, [o@li — (7 - n)[[o(e) + Vo(e)dl n)r — (¢, b)o\r — (P, tn)r, = 0



The Cohesive Shifted Fracture Approach

An efficient implementation

Find [u, €] € V, ,(Q) X V, ,(Q,) such that, V¢, y] € V, ,(Q) X V, ,(Q,),

‘@sm([u’ El; [¢’ v]) = oZ;FM([d” v,
B[, €1 (9, W) = (CV°u, Vi), + Bt ([, €]; [, w))
Ln(D WD) = ($.b)o\a, + (D tx)r, + Lo (W)

Idea: The SFM mixed formulation

is applied only on a layer of v ]
elements near the fracture, and : [
a primal formulation is applied A
everywhere else ¥ A—— ’
Euler-Lagrange coupling conditions A

—V.-o(V'u)= b, inQ\Q,,
oc(V'ut)ynt +0(e) " n =0, onl, ,
CVuyn=ty, ony NA(Q\Q,),

) AN N




Numerical Examples

Three-point bending test: true and surrogate crack paths

T Note: The true crack path is
: directly estimated using the
T b maximum principal stress
' criterion (i.e., it is not given
) a priori)
True crack path
Surrogate crack path




Numerical Examples
Three-point bending test: Mixed vs. efficient implementations

0.2

~«Mesh 1, h=5 mm

0.18 - ~--Mesh 2, h=2.5 mm
-4-Mesh 3, h=1.25 mm
-o-Mesh 4, h=0.625 mm
---Carpinteri & Colombo
~--Moés & Belytschko

0.16

cr

Load/(t_b?)
N

/ S
S
v el
)7 S
O e —
0 1 I 1 I L >

0 0.5 1 1.5 2 25 3 3.5 4

Deflection/b x10™
Meshes Number of elements Number of nodes Average element size around crack path
Mesh 1 1,565 851 5 mm
Mesh 2 3,477 1,828 2.5 mm
Mesh 3 10,513 5,385 1.25 mm

Mesh 4 19,318 9,774 0.625 mm



Numerical Examples

Three-point bending test: SFM vs. node-release technique

T

\i i 03! #NRT, Mesh 1, h=5 mm
i | % NRT, Mesh 2, h=2.5 mm y
I f +SFM, Mesh 1, h=5 mm VA
\ X --SFM, Mesh 2, h=2.5 mm
) ,_ 025
‘{/. /:
‘; o
\ 0.2
\ Y ~
I ‘.: N-DH
I i RS
| l =
5 2 0.15
| Q
1 —
, [
/'; fl
0.1
\‘\:‘ \
\
| | 0.05
{ z
( : 5
Mesh 1 Mesh 2

Deflection/b x10™



Numerical Examples

Three-point bending test: SFM vs. node-release technique

e, = / |x, — x,|In,-n,|dl, s A T 0 s SR
P --SFM True Crack ——
? -e-SFM Surrogate Crack
' -=-NRT Crack
---Reference First Order
10°F
10'




Numerical Examples

Three-point bending test: SFM vs. node-release technique

ey =W,y

~ Y.l

¥

Wea = /f-du—%u

0

ch=/

w*
B [0

*

f

[
g~ [ 1 au
0

/tdw— lr*w*]drc - /(;Fm
2

r{'

107

10°

10~

rf——

. -o-NRT Dissipated Energy

- --SFM Dissipated Energy
| ---Reference First Order

T

»*

-

A




Numerical Examples
Three-point bending test for fracture toughness = 50 & 200 (ductile)

Fracture energy G, = 50 N/m Fracture energy G = 200 N/m
0,25 T T T T T T
~+#-Mesh 1, h=5 mm o3 L ~#Mesh 1, h=5 mm
--Mesh 2, h=2.5 mm ’ --Mesh 2, h=2.5 mm
---Carpinteri & Colombo \ -——Carpinteri & Colombo
~--Moés & Belytschko \ ~--Moés & Belytschko
02+ I \
0.25 A
0.2r
NA 015 [ NA
o, =
4—'0 t;o
3 3 015"
g 3
= 01
0.1F
0.05 |
0.05- 7
0 t | ! I I ! 1 I 01‘ 1 1 1 -
0 1 2 3 = 5 6 7 8 0 0.5 1 1.5 2

Deflection/b x107 Deflection/b x107



Numerical Examples
L-shaped panel:

A




Numerical Examples
L-shaped panel:

8 B T T T T T T
Experiment Experiment
--Mesh 1, h=6 mm e -+Mesh 1, h=6 mm
~-Mesh 2, h=3 mm 77 A\ ~-Mesh 2, h=3 mm
—--Dumstorff & Meschke 4 ' ---Dumstorff & Meschke

0 1 L

1 1 J

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Deflection (mm)

(a) SFM true crack path for the L-shape panel test with  (b) Load-deflection curve for the L-shape panel test with
SIF. SIF.




Numerical Examples

L-shaped panel:

l Experinllent i
-+ SFM, Mesh 1, h=6 mm
-+ NRT, Mesh 1, h=6 mm
---Dumstorff & Meschke

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Deflection (mm)



Numerical Examples

Four-point bending test:

F,=1/11F mFl = 10/11F

i




Numerical Examples

Four-point bending test:

100 | r x . 100 1 . |
-4-Mesh 1, h=5 mm -4-Mesh 1, h=5 mm
-&-Mesh 2, h=2.5 mm -4-Mesh 2, h=2.5 mm
-e-Carpinteri & Colombo -e-Carpinteri & Colombo
501 -o-Moés & Belytschko - 50 -=-Moés & Belytschko
-o-Experiment -o-Experiment
0r 1 0F 1
=50+ - 50+ |
_100 | 1 1 | - 0 | 1 1
-150 -100 50 100 150 -150 -100 50 100 150

(a) SFM true crack path computed with the maximal (b) SFM true crack path computed with the stress inten-
tensile principal stress criterion. sity factor criterion.



Numerical Examples

Four-point bending test:

7 X 10" ‘ ‘ I ‘ ; [ 7 X 10" ‘ ] ‘ T ‘ .
2 F .5 --Mesh 1, h=5 mm ¢ [ ls --Mesh 1, h=5 mm
f 1™ --Mesh 2, h=2.5 mm I 11 -4-Mesh 2, h=2.5 mm
i -+-Carpinteri & Colombo | -+-Carpinteri & Colombo |

+-Moés & Belytschko
-&-Experiment

-+-Moés & Belytschko
-&-Experiment

Deflection(m) %107 Deflection(m) %10

(c) Load-deflection curves for the loads F; and F, (max- (d) Load-deflection curves for the loads F; and F, (SIF
imal tensile principal stress criterion). criterion).



Numerical Examples

Four-point bending test: SFM vs. node-release technique




Numerical Examples

Three-dimensional pull-out test

u,=0

/

600

— 700 v ¥



Numerical Examples

Three-dimensional pull-out test

Note: The surrogate and estimate of the true fractures are always continuous




Numerical Examples

Three-dimensional pull-out test

Note: The surrogate and estimate of the true fractures are always continuous
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Numerical Examples

Three-dimensional pull-out test

600 -

500 -

200

100 -

—~-Mesh 2, Linear CZM
-&-Mesh 2, Exponential CZM
---Gasser & Holzapfel

|

700

=

500 -

1 200

1 100

—~-Mesh 2, h=30 mm
e 600 - “Mesh 3, h=15 mm

—Mesh 1, h=50 mm

0.05 0.1 0.15 0.2
Deflection (mm)

0.25

035 04 0

(a) Linear and exponential cohesive zone model.

0.05 0.1 0.15 02 025 0.3 0.35 0.4
Deflection (mm)

(b) SFM: Linear cohesive zone model.

Meshes Number of elements Number of nodes Average element size around crack path
Mesh 1 10,690 2,176 50 mm
Mesh 2 13,122 2,745 30 mm
Mesh 3 23,443 4,791 15 mm



The Shifted Boundary Method

Theoretical developments for the following equations:
Poisson (with Alex Main, Nabil Atallah & Claudio Canuto)
Darcy (with Nabil Atallah & Claudio Canuto)

Stokes (with Nabil Atallah & Claudio Canuto)
Advection-diffusion (with Alex Main)
Linear Elasticity (wih Nabil Atallah)

Computational developments for the following equations:
Thermo-mechanics (with Kangan Li)
Navier-Stokes (with Alex Main)
Free-surface flow (not discussed here, with Alex Main, Léo Nouveau and Oriol Colomés)

Acoustics and shallow water equations (not discussed here, with Ting Song and Alex Main)

Fracture mechanics (with Kangan Li, Nabil Atallah, and Antonio Rodriguez-Ferran)

Under development, ongoing work:
Nonlinear mechanics (with Nabil Atallah, Vladimir Tomov & Bojan Lazarov)
Shock hydrodynamics (with Nabil Atallah, Vladimir Tomov & Bojan Lazarov)
Higher-order SBM (with Nabil Atallah, Claudio Canuto, Vladimir Tomov & Bojan Lazarov)
Moving boundaries (with Danjie Xu, Oriol Colomés, Léo Nouveau, & Vladimir Tomov)



