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Rigorous digital twins for systems of systems

“The size and complexity of many systems 
being built for government, industry, and the 
military have reached a threshold where 
customary methods of analysis, design, 
implementation, and operation are no longer 
sufficiently reliable. Many of these large 
systems are properly described as “systems-of-
systems” in that they are composed of many 
systems” (Dvorak 2005)

Mathematical Requirements
Near real-time prediction

Stable inter-model coupling
Efficient data assimilation

Physical structure preservation
Causal structure preservation

Support VV+UQ
Multimodal/multiscale data
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Data-driven models for high-consequence engineering 

Extracting a physics-based model when first 
principles derivation is intractable

To reliably embed in high-consequence engineering 
applications – need guarantees 

Data-driven multiscale FEM

Hyperbolicity preserving fluid 
closures

High-dimensional chemistry 
surrogates

Robust sub-system surrogates in 
systems of systems
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Mechanical assemblies
Multiphysics across coupled 

components

Microelectronics codesign
Two-way scale bridging between 

material, device, and circuit 
scales

Fusion Power
Plasma/material 

interactions bridging 
scales and models
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GOAL:
Rigorous multiphysics 

coupling preserving 
physical invariances with 
guaranteed performance

Systems of systems are ubiquitous in multiphysics/multiscale problems

https://directory.eoportal.org/web/eoportal/satellite-missions/e/edrs#lct
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Why the exterior calculus? Structure preserving Dirichlet2Neumann maps

We pose learning of surrogates on 
structure-preserving subgraphs coupled 

through flux/state relationships

Red: Mortar nodes/edges
Blue: Internal nodes/edges

Definition
The dirichlet2neumann map for a hodge 
Laplacian problem is the unique linear 
map from potential functions on 
boundary nodes to currents at edges 
coincident on boundary nodes

DNN or GP
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Systems admitting a circuit 
analogy admit a natural graph 

to “hang” a model on
Examples

Electrical circuits
Subsurface fracture networks

Mesh from simulations

Use Whitney forms to exploit duality 
between geometry and graphs

Repurpose classification networks to 
concurrently learn control volumes and 

balance laws

Graph discovery from full-field data – talk overview

Full-field data has no natural graph
Examples

Particle imaging velocimetry
Digital imaging correlation

Homogenized particle systems
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Data-driven exterior calculus

div/grad/curl building blocks on graphs
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Choice of inner product 
induces a dual operator

Mathematical preliminaries: Data-driven graph exterior calculus

IDEA
Traditional PDE: Ak are metrics from a mesh

Data-driven exterior calc: Fit to data w/ backprop
Graph Gradient/Curl

Graph Coboundary

De Rham complex encodes 
commuting diagram 

relationship

Trask, Nathaniel, Andy Huang, and Xiaozhe Hu. "Enforcing 

exact physics in scientific machine learning: a data-driven 

exterior calculus on graphs." Journal of Computational 

Physics 456 (2022): 110969.



Result: Combinatorial Hodge + Lax Milgram theory for elliptic operators

Obtain standard results from 

traditional finite element analysis: 

- Preserve exact sequence property

- Hodge decomposition

- Poincare inequality

- Lax-Milgram stability theory

- Conservation structure

Combinatorial 
Hodge Laplacian
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Enforcing exact physics via equality constrained QP

IDEA
If constraint is feasible (guaranteed solvable)

then we are guaranteed to obtain a model 
preserving structure independent of data/model fit

Generalized flux
Stabilize “black-box” 
physics with Hodge 

Laplacian

Conservation structure
Exact physics treatment

+

Trask, Nathaniel, Andy Huang, and Xiaozhe Hu. "Enforcing 

exact physics in scientific machine learning: a data-driven 

exterior calculus on graphs." Journal of Computational 

Physics 456 (2022): 110969.

Invertible bilinear form 
w/ metric params

Nonparametric 
estimator of “black-box” 

flux

Provides variational form
Conservation structure 

gives SBP formulas
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Enforcing exact physics via equality constrained QP
Trask, Nathaniel, Andy Huang, and Xiaozhe Hu. "Enforcing 

exact physics in scientific machine learning: a data-driven 

exterior calculus on graphs." Journal of Computational 

Physics 456 (2022): 110969.

A unique solution exists if the Hodge-Laplacian is sufficiently large relative to the nonlinear part, 
following standard elliptic PDE arguments

• Poincare constant easily estimated from matrix eigenvalues
• Lipschitz constant on nonlinearity straightforward for DNNs

Solvability constraint could be enforced during training if desired
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Data-driven Whitney forms

Learning a finite element space which implicitly defines a graph
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Mathematical preliminaries: barycentric coordinates

Partition of Unity 
property
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Mathematical preliminaries: low-order Whitney forms

Whitney Form Definition
Construction follows from 

barycentric interpolant

P1 nodal 
Lagrange Elements

Nedelec 
Edge Elements

Raviart-Thomas 
Face Elements

DOF are integral moments associated with mesh node/edge/face/cells 
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What’s special about Whitney forms?

+-

Explicit tie to conservation 
structure

Derivatives map differential 
forms directly using generalized 

Stokes theorems

Exact treatment of 
vector calculus operations
Image of exterior derivative

is onto, giving pointwise
exact sequence property

Alternative view in the 
graph exterior calculus

Mass matrix can be 
viewed as imposing 
sparsity on a fully 
connected graph

Exterior derivative
(DEC)

Graph 
coboundary

FEM mass
matrix
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Mathematical preliminaries: partition of unity

POU corresponding to Cartesian mesh vs learnable POU with non-disjoint support
associated with a traditional logistic regression network for a categorical RV

Traditional role:
Localizing approximation
Identifying charts of atlas

Our use:
Replace barycentric 

coordinates in Whitney 
form construction
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Whitney forms define diffuse boundary operators

POUs generalize cell
Defining boundary operator provides 

exterior derivative

Red: POU on cells
Blue: Boundary of POUS

In limit of disjoint 
partitions, want to 

recover oriented Dirac 
distribution

Using automatic differentiation, we 
obtain a fully differentiable ML 

architecture generalizing a 
traditional computational mesh 

IDEA:
Replace barycentric coordinates 
with machine learnable POU and 
perform standard Whitney form 

construction



Whitney forms define diffuse boundary operators

POU property
Multiply by one

Grad of POU property
Add zero



Proceed by induction on arbitrary manifolds

Replace IBP with Leibniz 
rule:

Inductively define Whitney 
form shape functions by 
mimicking construction:

Obtain discrete ”differential 
form” DOFs that induce 
coboundary operator:

Preserve exact sequence 
property to induce de Rham 
complex:
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Continuous Galerkin treatment of Hodge operator

Metric now comes from FEEC mass matrix

Requirement – how to build mass matrix



Only choice: how to specifically design architecture for initial POU?

Bilinear forms for conservation 
statements yield graph 

coboundary times mass matrices

If mass matrix is easily computable, 
we obtain a continuous Galerkin

(AKA no variational crimes)

Option 1:
Convex combinations of B-splines

Quadrature via pull-back to 
Cartesian mesh

22Define POU as convex combination of B1-splines



Only choice: how to specifically design architecture for initial POU?

Bilinear forms for conservation 
statements yield graph 

coboundary times mass matrices

If mass matrix is easily computable, 
we obtain a continuous Galerkin

(AKA no variational crimes)

Option 1:
Convex combinations of B-splines

Quadrature via pull-back to 
Cartesian mesh
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Only choice: how to specifically design architecture for initial POU?

Bilinear forms for conservation 
statements yield graph 

coboundary times mass matrices

If mass matrix is easily computable, 
we obtain a continuous Galerkin

(AKA no variational crimes)

Option 2:
Multivariate Gaussian PDF as POU

Analytic expressions for mass 
matrices

24

Trainable mean and covariance
allows for partitions to move and find 

optimal arrangement
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Continuous Galerkin treatment of Hodge operator

Metric now comes from FEEC mass matrix

Finally: 



Data-driven Whitney forms

Applications
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Mass conservationDiscontinuity parallel to gradient

Applications: unsupervised identification of material properties

No nonlinear 
fluxes
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Replace a 5.89M finite element 

simulation of as-built geometry 

with 8 data-driven elements w/ 

~0.1% error

implemented in production 

FEM code

Applications: digital twins of as built Lithium-ion battery cathode
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Applications: digital twins of bipolar junction transistor

Nonlinear fluxes

Extrapolation 
from single data 
point calibration

(More on this one 
later)
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Scaling up: data-driven mortar methods

To appear



The optimal recovery problem for 
uncertain physics

How do we account for model form uncertainty
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Mathematical preliminaries: Gaussian processes Classical kriging process:
1. Assume an RBF kernel for 

spatial covariance
2. Perform MLE to scale kernel 

to data
3. Condition on available data 

to obtain closed form 
posterior expression

Schur complement gives 
posterior
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Mathematical preliminaries: Optimal recovery problem Recast Kriging as an 
optimal recovery for 

interpolant with minimal 
RKHS norm
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Computational graph completion

Owhadi, Houman. "Computational graph 

completion." Research in the Mathematical 

Sciences 9.2 (2022): 27.

Red: Boundary nodes/edges
Blue: Internal nodes/edges

IDEA:
• Introduce slack variables for unknown variables

• Produce GP for every edge
• Couple through conservation law

• Extract set of GPs with closed form posteriors
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Fast training with block coordinate descent

Note the equality constrained QP buried in the MLE problem

Solving KKT system allows gradient descent training on slack variables only



toy circuit
subsurface discrete 
fracture network1

(linear)

arterial flow2

(highly nonlinear)
Bipolar junction transistor3

(nonlinear & multiscale)

1. Song et al. “Surrogate models of heat transfer in fractured rock and their use in parameter estimation” (in review)
2. Pegolotti et al. “Learning Reduced-Order Models for Cardiovascular Simulations with Graph Neural Networks” (arXiv preprint)
3. Generated by Paul Kuberry (Sandia National Laboratories, 01442 Computational Mathematics)
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Examples: probabilistic circuit discovery
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Fast training with block coordinate descent

Epistemic uncertainty quantification in exponential regime

Voltage drop
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Structure preservation when 
discovering bracket dynamics

Moving toward dynamical systems and physics-inspired deep 
learning architectures



Beyond boundary value problems

“Black box” – no required model                     Structure-preserving ML                      Strong physical priors

Neural ODE (NODE)
Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and 

David Duvenaud. Neural ordinary differential equations. 
In Proceedings of the 32nd International Conference on 
Neural Information Processing Systems, pages 6572–

6583, 2018. 

Universal DiffEq (UDE)
Christopher Rackauckas, Yingbo Ma, Julius Martensen, 

Collin Warner, Kirill Zubov, Rohit Supekar, Dominic 
Skinner, Ali Ramadhan, and Alan Edelman. Universal 
differential equations for scientific machine learning. 

arXiv preprint arXiv:2001.04385, 2020. 

Dictionary (e.g SINDy)
Brunton, Steven L., Joshua L. Proctor, and J. Nathan Kutz. 

"Discovering governing equations from data by sparse 
identification of nonlinear dynamical 

systems." Proceedings of the national academy of 
sciences 113.15 (2016): 3932-3937.

Hamiltonian NN
Samuel Greydanus, Misko Dzamba, and Jason Yosinski. 

Hamiltonian neural networks. In H. Wallach, H. 
Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. 

Garnett, editors, Advances in Neural Information 
Processing Systems, volume 32. Curran Associates, Inc., 

2019. 

Lagrangian NN
Miles Cranmer, Sam Greydanus, Stephan Hoyer, Peter 
Battaglia, David Spergel, and Shirley Ho. La- grangian 

neural networks. In ICLR 2020 Workshop on Integration of 
Deep Neural Models and Differential Equations, 2020. 

Symplectic RNN
Zhengdao Chen, Jianyu Zhang, Martin Arjovsky, and Léon 

Bottou. Symplectic recurrent neural networks. In 
International Conference on Learning Representations, 

2019. 

SympNets
Pengzhan Jin, Zhen Zhang, Aiqing Zhu, Yifa Tang, and 
George Em Karniadakis. Sympnets: Intrinsic structure-

preserving symplectic networks for identifying 
hamiltonian systems. Neural Networks, 132:166– 179, 

2020. 

Reversible Systems Only!

How can we learn dynamical systems 
with structure preservation when the 
governing equations are unknown?
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Structure preserving bracket dynamics

Gruber, Anthony, Kookjin Lee, and Nathaniel Trask. "Reversible and irreversible bracket-based dynamics for 

deep graph neural networks." arXiv preprint arXiv:2305.15616 (2023). 
Accepted to NeurIPS
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First law of thermodynamics

Second law of thermodynamicsClassically, a model is derived 
from first principles and one 
notices GENERIC structure

We parameterize algebraic 
structure and discover dissipative 
model

How to enforce null-space condition on L and M?
Exploit exact sequence property of data-driven exterior calculus!

Structure preserving bracket dynamics
(SNL, Spelman, PNNL, Brown, UPenn)
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Science4AI and AI4Science
(SNL, Spelman, PNNL, Brown, UPenn)

Key result: First O(N) method providing structure preserving dynamics!

Reversible Irreversible dissipation Thermal noise



Conclusions: Toward robust data-driven 
multiscale digital twins

Laser Communication Terminal (LCT)
 Bandwidth: 1.8 Gbps
 Range: 45,000 km
 Mass: 56kg
 TX power: 2.2 W
 Telescope diameter: 13.5 cm
 Payload power: 185 W
 Wavelength: 1550 nm
 Envelope: 0.6 x 0.6 x 0.7 m3

Big device O(1m3)
Individual systems

Large motor to point and steer 
laser

Small device O(1cm3)
Integrated multiphysics
No mechanical system

Challenge: cross device coupling

https://directory.eoportal.org/web/eoportal/satellite-missions/e/edrs#lct
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