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Motivation

Hills. The Airbus Challenge. EADS Engineering Europe, 2008
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Numerical code: Nek5000 (Fischer et al., 2008)

➢ Spectral elements allow to solve flows in complex geometries.

➢High-order numerical methods are required for accurate 

simulations of turbulent flows due to the significant scale disparity 

of the flow structures, both in time and space. 
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DNS of turbulent flow around a NACA4412 wing 

section at Rec=400,000 and AoA=5 degrees

https://www.youtube.com/watch?v=aR-hehP1pTk

https://www.youtube.com/watch?v=aR-hehP1pTk
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Effect of Reynolds number for a given pressure-

gradient history: well-resolved LES

Vinuesa et al., IJHFF, 2018
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Well-resolved LES of NACA4412 wing section.

Rec=1,000,000 and AoA=5

- 4.5 million elements, N=7

- 2.3 billion grid points.

- On-going accumulation of statistics.

- x+<27, y+<0.96, z+<13, x<13

- Relaxation-term LES with Nek5000 

(as in Schlatter et al., 2004). 

- (Lx, Ly, Lz) = (6c, 4c, 0.2c)

- Use of RANS BCs.

- Reɵ  6,000 and Re  707

- Flow tripped at x/c=0.1

Vinuesa et al., IJHFF, 2018



Ricardo Vinuesa:       rvinuesa@mech.kth.se,       www.vinuesalab.com,      @ricardovinuesa 7

Adaptive simulations of NACA0012 profile with 

rounded wing tip

Toosi et al., DLES

conference (2022)

Statistics, time series,

fields and reduced-

order models of the

wing-tip vortex and

the wake.

urms and vrms
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Applications of machine learning to fluid 

mechanics

- Milano and Koumoutsakos (2002) used neural 

networks to model the near-wall region of 

turbulent channel flows.

- Beck et al. (2018) employed neural networks to 

develop subgrid-scale (SGS) models for LES. 

They used DNS data to train and predict the SGS 

term.

- Fukami et al. (2019) used neural networks to 

obtain inflow conditions and for super-resolution.

- Duraisamy et al. (2019) showed the potential of 

machine learning for developmet of RANS models.

- Raissi et al. (2020) identified the potential of 

physics-informed neural networks (PINNs) for 

reconstrcuting flow fields from tracer input.

Reuters

- Brunton et al. (2019) showed, among others, applications to flow control. 
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Enhanced CFD with machine learning

Vinuesa & Brunton, Nature Comp. Science 2, 358–366 (2022)  
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Importance of developing interpretable 
deep-learning models

- Deep-learning models act as black boxes, and lack of interpretability is a challenge 

(Rudin, 2019).

- A-posterior explainability (e.g. saliency methods, which parts of the input contribute the 

most to the output) may be insufficient.

- Method for a-posteriori interpretability? Combination of inductive biases and genetic 

programming to produce symbolic expressions, increasing the output interpretability 

(Cranmer et al., 2020)
Vinuesa and Sirmacek, Nature Machine 

Intelligence 3, 926 (2021)
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Outline of machine-learning applications to 

fluid mechanics

▪ Non-intrusive sensing in a turbulent channel via 

CNNs.

▪ Non-intrusive sensing with coarse 

measurements via GANs.

▪ Predictions for wall models via CNNs.

▪ Reduced-order models in turbulence via AEs.

▪ Flow control via DRL.
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Flow reconstruction with a convolutional neural 

network (CNN)
- Prediction of off-wall planes based on information at the wall.

- Additional motivation: closed-loop reactive control.

w,x(x,z,t=tpred),

w,z(x,z,t=tpred),

pw(x,z,t=tpred)

u’,v’,w’(x,y=ypred,z,t=tpred)

Guastoni et al., J. Fluid Mech. 928, A27 (2021)
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DNS of turbulent open channel flow

- DNS based on the Fourier-Chebyshev code SIMSON from KTH (Chevalier et al., 2007).

- Open channel flow (simplicity): no large-scale interactions between two walls. 

-Re=180 & 550

- (Lx,Ly,Lz)=(4h×h×2h)

-No slip at y/h=0

-Symmetry at y/h=1

Guastoni et al., J. Fluid Mech. 928, A27 (2021)
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Neural-network architecture

- Fully connected layers: weighted sum of the 

inputs and non-linear activation function.

- Very large numbers of parameters: they are 

prone to over-fitting the data.

Srinivasan et al., Phys. Rev. Fluids (2019)

NVIDIA Deep Learning Institute

- Convolutional layers: small set of 

parameters (kernel of 3x3 or 5x5 sweeps the 

domain).

- Extensively used in computer vision (easy to 

train and suitable for identification of local 

features).
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CNN architecture

- Prediction of off-wall planes based on information at the wall with CNNs (Li et al., 1984).

3

Schematic representation obtained from:  http://alexlenail.me/NN-SVG/index.html

64

128

256

256

128

3

Filter: 3×5×5=75 parameters

We apply a total of 64 filters, and obtain 64 feature maps

Each filter identifies one (or several) feature. More complex towards the output.
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An extension to Re=550

- We consider 3 input fields (adding the pressure).

- We predict the 3 velocity fluctuations (scaled to be in the same range).

- Note that we consider periodic padding (CNN output is deterministic, local influence).

Guastoni et al., J. Fluid Mech. 928, A27 (2021)
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A new method: FCN-POD

Güemes et al., Phys. Fluids (2019)

Guastoni et al., J. Fluid Mech. 928, A27 (2021)

- In addition to the direct field prediction, we consider predicting the POD coefficients 

(embedding known physical information).

- We split the target plane into subdomains (reconstruction with fewer POD modes).
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Instantaneous predictions at Re=550

Guastoni et al., J. Fluid Mech. 928, A27 (2021)

- EPOD is formally 

equivalent to LSE (linear 

method).

- Close to the wall FCN is 

best, farther from it FCN-

POD is better due to the 

encoded information in the 

POD modes.
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Turbulence statistics at Re=550

- Close to the wall FCN is best, farther from it FCN-POD is better due to the 

encoded information in the POD modes.

Guastoni et al., J. Fluid Mech. 928, A27 (2021)
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Improving training performance:

Transfer learning at Re=180
- The deeper layers identify progressively larger features.

- Fix the first 3 layers (trained at y+=15) and train the last 3 (to predict at y+=50).

Guastoni et al., J. Phys.: Conf. Ser. (2020)
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Improving training performance:

Transfer learning at Re=180
- The deeper layers identify progressively larger features.

- Fix the first 3 layers (trained at y+=15) and train the last 3 (to predict at y+=50).

2
164

128

256

256

128Fully 

trainable 2.94 1.35 28.5 100

Transfer 

learning
3.17 0.5 30.2 23

Guastoni et al., J. Phys.: Conf. Ser. (2020)
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Transfer learning from Re=180 to 550

- We initialize the training for Re=550 with the weights from the Re=180 case.

- The learning rate needs to be reduced.

Guastoni et al., J. Fluid Mech. 928, A27 (2021)

- Similar error levels with 25% of the training data!
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Outline of machine-learning applications to 

fluid mechanics

▪ Non-intrusive sensing in a turbulent channel via 

CNNs.

▪ Non-intrusive sensing with coarse 

measurements via GANs.

▪ Predictions for wall models via CNNs.

▪ Reduced-order models in turbulence via AEs.

▪ Flow control via DRL.
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From sparse measurements to high-resolution 

predictions using GANs

Kim et al., (2021)

Wall reconstruction

Güemes et al., Phys. Fluids 33, 075121 (2021)
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Flow reconstruction from coarse measurements

Güemes et al., Phys. Fluids 33, 075121 (2021)
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FCN model for predictions closer to the wall

- Is it possible to predict the inner region based on 

the outer region?

- Application to off-wall boundary conditions?

Balasubramanian

et al. (2021), 

arXiv:2107.07340
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Self similarity in the overlap region:

Off-wall boundary conditions
- Exploit the self similarity of scales with y.

- Mizuno and Jiménez (2013): Channel at Re=1,000; from y/h=0.2 to 0.1, rescaling.

- Predictions of y+=50 based on data at 100 with CNNs, Re=550. 

Balasubramanian

et al. (2021), 

arXiv:2107.07340

- Small receptive field: 

information from large 

structures cannot be 

captured.

- Missing scales: this 

information is not present 

in the large scales.
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- Small receptive field: max pooling to 

better identify features.

- Missing scales: Perhaps GANs-based 

recontruction (Güemes et al., Phys. 

Fluids, 2021).

Spectra and statistics at Re=550, y+=50

Balasubramanian

et al. (2021), 

arXiv:2107.07340
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Non-linear orthogonal modal decomposition in 

turbulent flows via autoencoders

Eivazi et al., Expert Syst. Appl. 202, 117038 (2022)

Objectives:

- Learning a compact latent representation of high-dimensional data by accounting 

for the non-linearity in the low-dimensional mapping.

- Ranking modes based on their contribution to the reconstruction (Optimality).

- Learning a compact, near-orthogonal and parsimonious latent representation of 

high-dimensional data by minimizing the correlation between the latent variables, 

as well as penalizing the size of the latent vector.

- Extraction of interpretable non-linear modes.
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Turbulent flow in a simplified urban 

environment

Eivazi et al., Expert Syst. Appl. 202, 117038 (2022)

We employ a database (Torres 

et al., 2021; Lazpita et al., 

2022) of the flow through a

simplified urban environment:

- Well-resolved large-eddy 

simulation (LES) using 

Nek5000.

- The x–z cross-sectional 

velocity fields at y = 0.5h are 

extracted and used as the 

input data.

- 1,200 instantaneous fields.

- Number of grid points in x 

and z: (Nx ,Nz) = (96, 192).
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Convolutional-neural-network-based 

autoencoders (CNN-AEs)

Eivazi et al., Expert Syst. Appl. 202, 117038 (2022)

- Latent variables contain temporal information.

- Obtain modes by using decoder, setting rest of latent variables to zero.
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CNN-based hierarchical autoencoders

(CNN-HAEs)

Eivazi et al., Expert Syst. Appl. 202, 117038 (2022)

d=1, [r1]

 r1

d=2, [r1, r2]

 r2

d=3, [r1, r2, r3]

 r3
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CNN-based β-variational autoencoders (CNN-βVAE)

Introducing stochasticity

Eivazi et al., Expert Syst. Appl. 202, 117038 (2022)

Let us consider:

- p(x) is the distribution of the original data.

- p(r) is the distribution of the data in the latent space.

- We aim to maximize:

- p(x) is the marginal likelihood: approximation of p(x) with parameters .

- In VAEs, p(xr) is a probabilistic decoder (generative model).

- In VAEs, q(rx) is a probabilistic encoder (recognition model).
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CNN-based β-variational autoencoders (CNN-βVAE)

Introducing stochasticity

Eivazi et al., Expert Syst. Appl. 202, 117038 (2022)

We assume that the encoder q(rx) is a Gaussian distribution:

We sample from q(rx) using an auxiliary normally-distributed random number:

The βVAE loss function is:

β is a penalization factor which promotes learning statistically-independent latent 

variables (minimizing the distance between p(r) and the product of its marginals), and also 

penalizing the size of the latent vector d. Disentangled and parsimonious latent space.
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CNN-based β-variational autoencoders (CNN-βVAE)

Introducing stochasticity

Eivazi et al., Expert Syst. Appl. 202, 117038 (2022)
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Flow-field reconstruction

Eivazi et al., Expert Syst. Appl. 202, 117038 (2022)
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Orthogonality: determinant of the cross-correlation 

matrix

Eivazi et al., Expert Syst. Appl. 202, 117038 (2022)
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Effect of the penalization factor β

Eivazi et al., Expert Syst. Appl. 202, 117038 (2022)

3 nonzero 5 nonzero

10 nonzero8 nonzero
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Optimality: ranking CNN-βVAE modes and 

interpretability

Eivazi et al., Expert Syst. Appl. 202, 117038 (2022)

Ranking process:

- Make all latent variables zero except 1, and take the one with highest reconstructed energy.

- The second mode is the one that, together with the first one, has best reconstruction.

- And so on for all the latent variables. 

Interpretability: Orthogonal modes related to large-scale shedding also found in POD.
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Deep reinforcement learning for flow control

Introduction

Guastoni et al., APS (2021)
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Control of a 2D separation bubble

Case definition

Guastoni et al., APS (2021)
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Control of a 2D separation bubble

Implementation in SIMSON

Guastoni et al., APS (2021)
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Control of a 2D separation bubble

Performance

Guastoni et al., APS (2021)

- Larger bubble reduction with DRL (~30%) than with periodic forcing (~20%).

- Currently extending to opposition control in turbulent channel flow.
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Summary and Conclusions

- CNNs are valuable tools for spatial reconstruction of turbulent fields.

- Excellent predictions at y+=15 (<1% error), outperforming linear

reconstruction methods.

- Off-wall boundary conditions and GANs for super-resolution.

- Non-linear modal decompositions using autoencoders.

- Deep-reinforcement-learning-based flow control.
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PINNs application to RANS simulations

- 2D RANS equations for incompressible flows

Solve RANS equationsDATA + Underdetermined 

sytem of Eqs. 

Physics-informed neural networks for solving Reynolds-averaged Navier–

Stokes equations. Eivazi et al., Phys. Fluids 34, 075117 (2022)
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PINNs application to RANS simulations

Total loss

Residual of the
RANS equations

(Unsupervised loss)

Loos for the BCs
(Supervised loss)

: Number of collocation points

: Number of points on the 
domain boundaries

- Collocation points

Boundary pointsx

Physics-informed neural networks for solving Reynolds-averaged Navier–

Stokes equations. Eivazi et al., Phys. Fluids 34, 075117 (2022)
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PINNs application to RANS simulations

Test case 4: NACA4412 airfoil
DATA from:
Vinuesa et al., Int. J. Heat Fluid Flow 72, 86 (2018).

Physics-informed neural networks for solving Reynolds-averaged Navier–

Stokes equations. Eivazi et al., Phys. Fluids 34, 075117 (2022)
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PINNs application to RANS simulations

Test case 4: NACA4412 airfoil

Physics-informed neural networks for solving Reynolds-averaged Navier–

Stokes equations. Eivazi et al., Phys. Fluids 34, 075117 (2022)
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PINNs application to RANS simulations

Test case 5: Periodic hill

Physics-informed neural networks for solving Reynolds-averaged Navier–

Stokes equations. Eivazi et al., Phys. Fluids 34, 075117 (2022)
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CNN-based β-variational autoencoders (CNN-βVAE)

Eivazi et al., Expert Syst. Appl. 202, 117038 (2022)



Ricardo Vinuesa:       rvinuesa@mech.kth.se,       www.vinuesalab.com,      @ricardovinuesa 55

CNN-based β-variational autoencoders (CNN-βVAE)

Eivazi et al., Expert Syst. Appl. 202, 117038 (2022)
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CNN-based β-variational autoencoders (CNN-βVAE)

Eivazi et al., Expert Syst. Appl. 202, 117038 (2022)


