
Development of a DG
compressible Navier-Stokes
solver with MFEM
M. Bolinches - PECOS development team
10/20/2021· MFEM Workshop

Index

Introduction

GPU implementation
Implementation approach
Kernel optimization
DG face integration drawback

Final comments

PECOS
Predictive Engineering and Computational Sciences

2

Index

Introduction

GPU implementation
Implementation approach
Kernel optimization
DG face integration drawback

Final comments

PECOS
Predictive Engineering and Computational Sciences

3

Introduction

• Oden Institute (UT Austin) interested in high-�delity simulations of
Inductively Coupled Plasma (ICP) Torch

� as part of PSAAP3 project
� initially di�erent physics simulated independently (here �ow only)
� fully coupled simulations to come

• MFEM library chosen as framework for development of simulation
infrastructure
• High-order (HO) compact schemes particularly e�cient for GPU
architectures

� Large number of operations per DOF and independent from neighbors

• Discontinuous Galerkin (DG) scheme initially chosen
� no GPU supported by MFEMv4.2

PECOS
Predictive Engineering and Computational Sciences

4

Introduction
CPU based code

• Baseline CPU code implemented
� Based on MFEM example 18
� Veri�ed using MASA library (MMS)

• Characteristics provided by MFEM
� Discontinuous Galerkin (DG) method, i.e. FE method
� arbitrary order of accuracy
� MPI parallel
� unstructured

• Main implemented features
� compressible
� upwind �ux (Roe/LF) at interfaces, i.e. dissipative
� HDF5 output and restart
� adiabatic & isothermal wall BCs
� re�ecting & non-re�ecting in/out BCs
� communication/computation overlap
� restart with arbitrary #MPI tasks

PECOS
Predictive Engineering and Computational Sciences

5

Introduction
GPU code

• GPU code based on CPU version
• Some functions duplicated for GPU support

� Makes use of MFEM functions where possible
� Takes over some loops for higher degree of parallelism
� Uses MFEM GPU directives for kernel coding

• GPU implementation e�orts in two areas
� increased level of parallelism
� kernel optimization

• Source code https://github.com/pecos/tps
• Documentation https://pecos.github.io/tps-docs/

PECOS
Predictive Engineering and Computational Sciences

6

https://github.com/pecos/tps
https://pecos.github.io/tps-docs/

Index

Introduction

GPU implementation
Implementation approach
Kernel optimization
DG face integration drawback

Final comments

PECOS
Predictive Engineering and Computational Sciences

7

Index

Introduction

GPU implementation
Implementation approach
Kernel optimization
DG face integration drawback

Final comments

PECOS
Predictive Engineering and Computational Sciences

8

DG discretization

• Weak DG formulation of Navier-Stokes (NS) equations

ˆ

Ωe

∂Uh

∂t
φjdΩ =

ˆ

Ωe

Fh · ∇φjdΩ −
ˆ

∂Ωe

F∗ · nφjd (∂Ω)

• Superscript h denotes numerical solution; F∗ numerical �ux at interface
• Volume integrals result in element-wise matrix-vector multiplication
• Last term involves data from neighboring elements

PECOS
Predictive Engineering and Computational Sciences

9

Implementation approach

• MFEM �for-loops� executing kernels substituted by single kernel
� Increases the level of parallelism of computation
� more complex kernels

MFEM Implemented

Element-wise for each element execute single kernel where each thread group

functions element GPU kernel computes contribution to one element

Face for each face execute single kernel where each thread group computes

integrals face GPU kernel all face contributions for one element

• Example 18 has been implemented using these two approaches
� Single kernel performed better
� mfem::NonLinearForm kept transferring data GPU-CPU for both v4.2 and v4.3

PECOS
Predictive Engineering and Computational Sciences

10

MFEM GPU macros
• MFEM GPU macros allow for hardware independent coding
• GPU code generated at compile time

� CUDA macros

#de f i n e MFEM_SHARED __shared__
#de f i n e MFEM_SYNC_THREAD __syncthreads ()
#de f i n e MFEM_THREAD_ID(k) threadIdx . k
#de f i n e MFEM_THREAD_SIZE(k) blockDim . k
#de f i n e MFEM_FOREACH_THREAD(i , k ,N) f o r (i n t i=threadIdx . k ; i<N; i+=blockDim . k)
#de f i n e MFEM_FORALL_2D(i ,N,X,Y,BZ , . . .) ForallWrap<2>(true ,N , . . .

� HIP macros

#de f i n e MFEM_SHARED __shared__
#de f i n e MFEM_SYNC_THREAD __syncthreads ()
#de f i n e MFEM_THREAD_ID(k) hipThreadIdx_ ##k
#de f i n e MFEM_THREAD_SIZE(k) hipBlockDim_ ##k
#de f i n e MFEM_FOREACH_THREAD(i , k ,N)
#de f i n e MFEM_FORALL_2D(i ,N,X,Y,BZ , . . .) ForallWrap<2>(true ,N , . . .

PECOS
Predictive Engineering and Computational Sciences

11

Example element-wise function
Inverse mass matrix multiplication

• For-loop controlling kernel execution

f o r (i n t e l =0; e l<NumElems ; e l++){
// Get data
// Get element i nv e r s e mass matrix
// GPU matrix−vector mu l t i p l i c a t i o n ke rne l
// Add to g l oba l array

}

• Single kernel implementation

MFEM_FORALL_2D(e l , NumElems , dof , 1 , 1 , {
MFEM_FOREACH_THREAD(i , x , dof) {

// Load data
// Matrix−vector mu l t i p l i c a t i o n
// Save to g l oba l vec tor

}
}) ;

PECOS
Predictive Engineering and Computational Sciences

12

Face integration
• Loop over element faces

f o r (i n t i =0; i<mesh−>GetNumFaces () ; i++){
// Get data elems 1 & 2
// Perform GPU face i n t e g r a t i o n
// Add fa c e con t r i bu t i on to element

}

• Single kernel by faces not possible
� faces belonging to same element override each other
� face contributions implemented by element

MFEM_FORALL_2D(e l ,NumElemType , elDof , 1 , 1 , {
MFEM_FOREACH_THREAD(i , x , e lDof) {

// loop through f a c e s
// add t o t a l con t r i bu t i on to elemenent

}
}

PECOS
Predictive Engineering and Computational Sciences

13

Index

Introduction

GPU implementation
Implementation approach
Kernel optimization
DG face integration drawback

Final comments

PECOS
Predictive Engineering and Computational Sciences

14

Computations on GPU

• Most (simple) functions are memory bound
� Accessing data more expensive than operations

• Di�erent memory types have very di�erent access rates

Access type CPU
GPU Global GPU Shared

Bandwidth (peak) ∼32GB/s 900GB/s �Much faster�

[Shared data access rate for the particular GPU not found but reported as �much faster� in the NVIDIA developer guide]

• Low GPU
CPU rates imply all operations must happen on GPU
• Memory management is critical in GPU computation

PECOS
Predictive Engineering and Computational Sciences

15

Memory Access Bandwidth

• Global memory accesses rates can
vary dramatically with access
patterns

� stridded accesses to be avoided
• Shared memory used throughout

1. can reduce memory accesses
2. can improve memory access patterns

a.k.a. coalesced memory accesses

• E�cient kernels can be achieved by
� minimizing global memory access
� maximizing operations for loaded data (great for compact HO FE)

[In line with MFEM webside https://mfem.org/gpu-support/]

PECOS
Predictive Engineering and Computational Sciences

16

https://mfem.org/gpu-support/

Shared memory optimizations

• Coalesced accesses can be achieved by loading data in the array order
� data ordering [ρ1 · · · ρN u1 · · ·uN v1 · · · vN w1 · · ·wN p1 · · · pN]
� e.g. �uxes computation kernel will load �rst density for each node, then velocities etc.

• Reducing global memory accesses
� can be done by storing data in shared arrays

• Shared memory is scarce (needs to be used wisely)
� 64KB including read register memory for a NVIDIA V100

PECOS
Predictive Engineering and Computational Sciences

17

Example
Multiplication by inverse of mass matrix

• If shared memory not used
� data in array d_z is accessed multiple times
� kernel looks simpler

MFEM_FORALL_2D(e l ,NE, dof , 1 , 1 , {
i n t e l i = e l + e lemOf f se t ;
i n t o f f s e t I n v = d_posDofInvM [2* e l i] ;
i n t o f f s e t I d s = d_posDofIds [2* e l i] ;
MFEM_FOREACH_THREAD(eq , y , num_equation) {

MFEM_FOREACH_THREAD(i , x , dof) {
i n t index = d_nodesIDs [o f f s e t I d s+i] ;
double temp = 0 ;
f o r (i n t k=0;k<dof ; k++){

in t indexk = d_nodesIDs [o f f s e t I d s +k] ;
temp += d_invM [o f f s e t I n v +i *dof +k]*d_z [indexk + eq*totNumDof] ;

}
d_y [index+eq*totNumDof] = temp ;

}
}

}) ;

PECOS
Predictive Engineering and Computational Sciences

18

Example using shared memory
Multiplication by inverse of mass matrix

• Using shared data avoids accessing data in d_z repeatedly
� this kernel takes 55% of the time needed to compute the previous

MFEM_FORALL_2D(e l ,NE, dof , 1 , 1 , {
MFEM_FOREACH_THREAD(i , x , dof) {

MFEM_SHARED double data [2 1 6 * 5] ;
i n t e l i = e l + e lemOf f se t ;
i n t o f f s e t I n v = d_posDofInvM [2* e l i] ;
i n t o f f s e t I d s = d_posDofIds [2* e l i] ;
i n t index = d_nodesIDs [o f f s e t I d s+i] ;

f o r (i n t eq=0;eq<num_equation ; eq++)
data [i+eq*dof] = d_z [index + eq*totNumDof] ;

MFEM_SYNC_THREAD;
f o r (i n t eq=0;eq<num_equation ; eq++){

double tmp = 0 . ;
f o r (i n t k=0;k<dof ; k++) tmp += d_invM [o f f s e t I n v +i *dof +k]* data [k+eq*dof] ;
d_y [index+eq*totNumDof] = tmp ;

}
}

}) ;

PECOS
Predictive Engineering and Computational Sciences

19

Index

Introduction

GPU implementation
Implementation approach
Kernel optimization
DG face integration drawback

Final comments

PECOS
Predictive Engineering and Computational Sciences

20

Drawback of DG face integration

• Most complex and expensive kernel
� Contains lots of non-consecutive global memory
accesses

� 47% of total execution time
• Face contribution kernels always more expensive
than volume contributions

� involves loading data from neighboring elements
� memory accesses always non-ordered

• Particularly damaging in DG
� interpolation to integration points requires loading all
element solution points

• In contrast, other methods use only nodes at
common faces, e.g. FR

DG

FR

PECOS
Predictive Engineering and Computational Sciences

21

Index

Introduction

GPU implementation
Implementation approach
Kernel optimization
DG face integration drawback

Final comments

PECOS
Predictive Engineering and Computational Sciences

22

Final comments

• DG code for the solution of the NS equations has been developed
� CPU version coded following example 18

• GPU code approach
� increased level of parallelism
� optimized/minimized global memory accesses via shared memory

• Face integration most expensive kernel
� large number of data accessed
� data access cannot be coalesced
� it is the drawback of DG
� improvement is underway

PECOS
Predictive Engineering and Computational Sciences

23

Code and acknowledgment

• Source code https://github.com/pecos/tps
• Documentation https://pecos.github.io/tps-docs/

• This material is based upon work supported by the Department of Energy,
National Nuclear Security Administration under Award Number
DE-NA0003969.

PECOS
Predictive Engineering and Computational Sciences

24

https://github.com/pecos/tps
https://pecos.github.io/tps-docs/

	Introduction
	GPU implementation
	Implementation approach
	Kernel optimization
	DG face integration drawback

	Final comments

