The State of MFEM

MFEM Community Workshop October 25, 2022 Tzanio Kolev LLNL

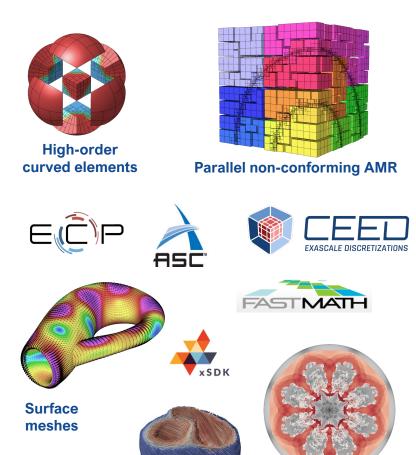
MFEM

Cutting-edge algorithms for powerful applications on HPC architectures

Flexible discretizations on unstructured grids

- Triangular, quadrilateral, tetrahedral and hexahedral meshes.
- Local conforming and non-conforming AMR, mesh optimization.
- Bilinear/linear forms for variety of methods: Galerkin, DG, DPG, ...

High-order and scalable


- Arbitrary-order H1, H(curl), H(div)- and L2 elements.
- Arbitrary order curvilinear meshes.
- MPI scalable to millions of cores and GPU-accelerated.
- Enables application development from laptops to exascale machines.

Built-in solvers and visualization

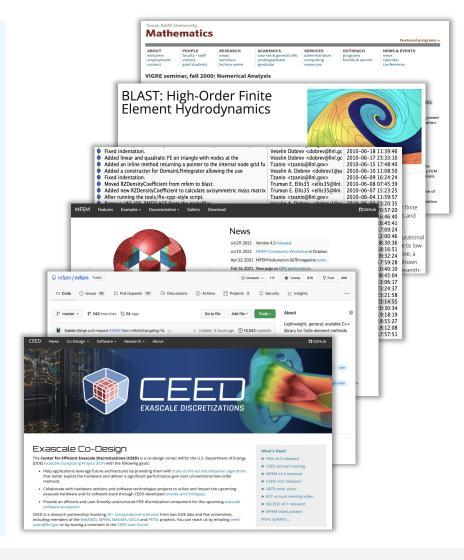
- Integrated with: HYPRE, SUNDIALS, PETSc, SLEPc, SUPERLU, ...
- AMG preconditioners for full de Rham complex, geometric MG
- Support for GPU solvers from: HYPRE, PETSc, AmgX
- Accurate and flexible visualization with Vislt, ParaView and GLVis

Open source

- Available on GitHub under BSD license. 75+ example codes and miniapps.
- Part of FASTMath, ECP/CEED, xSDK, OpenHPC, E4S, ...

Heart

modeling

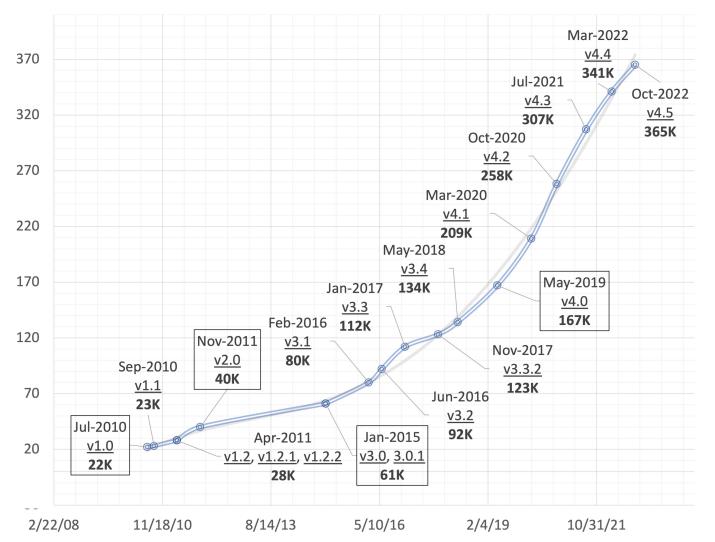

Compressible flow

ALE simulations

A Brief History

We've been doing this for a long time

- 2000 "VIGRE seminar: Numerical Analysis," Texas A&M University
 - Research code: AggieFEM/aFEM
 - Some of the original contributors: @v-dobrev, @tzanio, @stomov
 - Used in summer internships at LLNL
- 2010 BLAST project at LLNL
 - Motivated high-order, non-conforming AMR and parallel scalability developments
 - MFEM repository starts in May 2010
 - Some of the original contributors: @v-dobrev, @tzanio, @rieben1, @trumanellis
 - Project website mfem.org goes live in August 2015
- 2017 Development moved to GitHub
 - First GitHub commits in February 2017
 - Team expands to include many new developers at LLNL and externally
- 2017 CEED project in the ECP
 - Motivated partial assembly, GPU, and exascale computing developments



The Source Code Has Grown Significantly

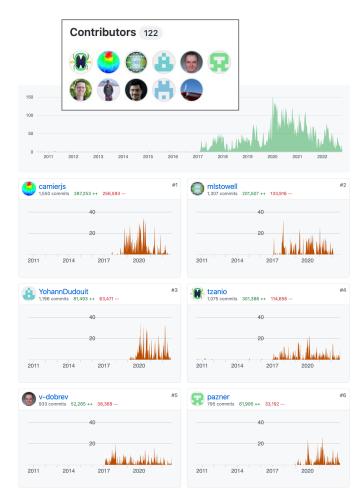
SLOC in MFEM releases over the last 12 years

mfem-4.5.tgz	v4.5	Oct 2022	3.3M	365K	
mfem-4.4.tgz	v4.4	Mar 2022	3.0M	341K	
mfem-4.3.tgz	v4.3	Jul 2021	2.8M	307K	
mfem-4.2.tgz	v4.2	Oct 2020	2.4M	258K	
mfem-4.1.tgz	v4.1	Mar 2020	7.9M	209K	
mfem-4.0.tgz	v4.0	May 2019	5.2M	167K	GPU support
mfem-3.4.tgz	v3.4	May 2018	4.4M	134K	
mfem-3.3.2.tgz	v3.3.2	Nov 2017	4.2M	123K	mesh optimization
mfem-3.3.tgz	v3.3	Jan 2017	4.0M	112K	
mfem-3.2.tgz	v3.2	Jun 2016	3.3M	92K	dynamic AMR, HPC miniapps
mfem-3.1.tgz	v3.1	Feb 2016	2.9M	80K	$\textit{fem} \leftrightarrow \textit{linear system interface}$
mfem-3.0.1.tgz	v3.0.1	Jan 2015	1.1M	61K	
mfem-3.0.tgz	v3.0	Jan 2015	1.1M	61K	non-conforming AMR
mfem-2.0.tgz	v2.0	Nov 2011	308K	40K	arbitrary order spaces, NURBS
mfem-v1.2.2.tgz	v1.2.2	Apr 2011	240K	28K	
mfem-v1.2.1.tgz	v1.2.1	Apr 2011	240K	28K	
mfem-v1.2.tgz	v1.2	Apr 2011	240K	28K	MPI parallelism based on hypre
mfem-v1.1.tgz	v1.1	Sep 2010	166K	23K	
mfem-v1.0.tgz	v1.0	Jul 2010	160K	22K	initial release

The Community Has Grown Significantly

GitHub, downloads, and workshop stats

GitHub


- 122 contributors
- 100 commits / week
- **541** people in the mfem organization *join* to contribute + receive announcements
- 150 visitors / day
- **1040** stars *thank you!*

Downloads

- 180 downloads + clones / day · 65K / year
- 108 countries total

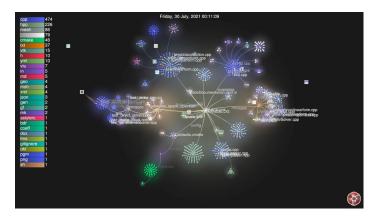
2022 Community Workshop

- 219 researchers
- 120 organizations
- 34 countries

Top contributors as of Oct 2022

MFEM has been downloaded from 108 countries

2022 Community workshop had 219 registrations



Latest Releases Were Team Efforts

Versions 4.4 + 4.5 stats

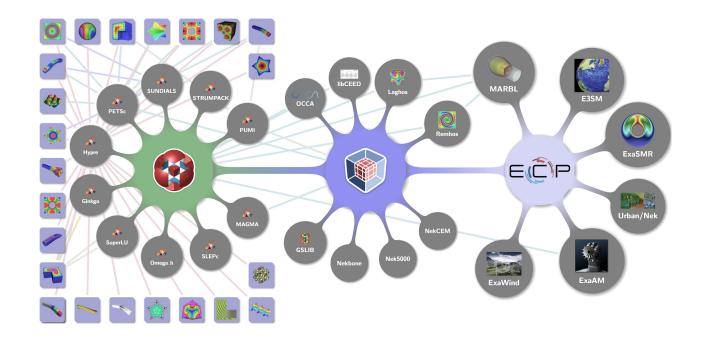
- Released Mar 21 + Oct 22, 2022
- 15 months in development
- 73 contributors
- 579 PRs merged
- 366 issues closed
- 58K new lines of code
- 3900 number of commits
- Many new features:
 - GPU kernels for DG, LOR, linear forms
 - AMG solvers on AMD GPUs
 - Submesh extraction, hr-adaptivity
 - AD for nonlinear elasticity (Hooke)
 - Enzyme, Algoim, ParMoonolith support

The making of MFEM versions 4.4 and 4.5 youtu.be/fHC019J1CWU

The mfem-4.4+4.5 CHANGELOG has 70 entries

MFEM contributors on GitHub

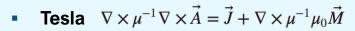


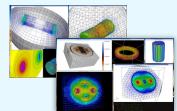


Examples

The first stop for new users

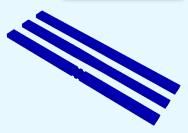
- 33 example codes, most with both serial + parallel versions
- Tutorials to learn MFEM features
- Starting point for new applications
- Show integration with many external packages, miniapps


Miniapps


More advanced, ready-to-use physics solvers

Volta, Tesla, Maxwell and Joule Miniapps

Static and transient electromagnetics

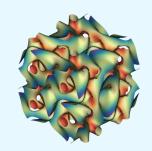

• Volta
$$-\nabla \cdot \epsilon \nabla \varphi = \rho - \nabla \cdot \vec{P}$$



Maxwell · transient full-wave EM

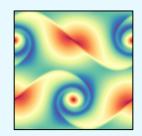
$$\frac{\partial (\varepsilon \vec{E})}{\partial t} = \nabla \times (\mu^{-1} \vec{B}) - \sigma \vec{E} - \vec{J}$$
$$\frac{\partial \vec{B}}{\partial t} = -\nabla \times \vec{E}$$

- Joule · transient magnetics + Joule heating
- Arbitrary order elements + meshes
- Adaptive mesh refinement



mfem.org/electromagnetics

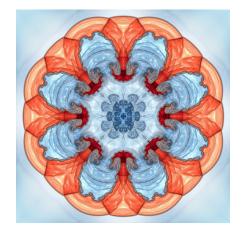
Navier Miniapp


Transient incompressible Navier-Stokes equations

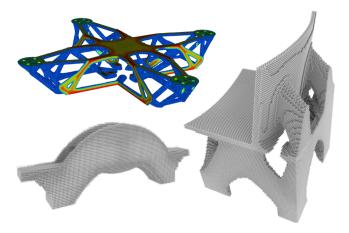
$$\frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \nabla)\boldsymbol{u} - \nu \Delta \boldsymbol{u} + \nabla p = \boldsymbol{f}$$
$$\nabla \cdot \boldsymbol{u} = 0$$

- Arbitrary order elements
- Arbitrary order curvilinear mesh elements
- Adaptive IMEX (BDF-AB) time-stepping algorithm up to 3rd order
- State-of-the-art HPC performance
- GPU acceleration
- Convenient user interface

3D Taylor-Green vortex, 7th order

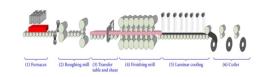

Double shear layer, 5th order, Re = 100000

mfem.org/fluids

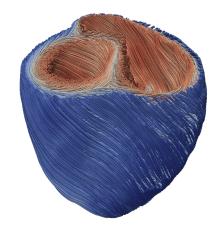


Applications

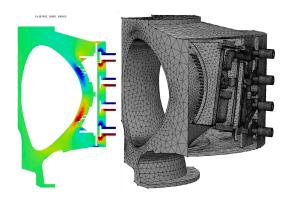
Some of the large-scale simulation codes powered by MFEM

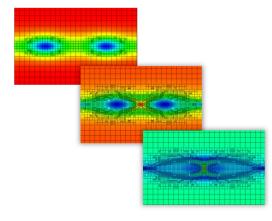

Inertial confinement fusion (BLAST)

Topology optimization for additive manufacturing (LiDO)



Electric aircraft design (RPI) MRI modeling (Harvard Medical)



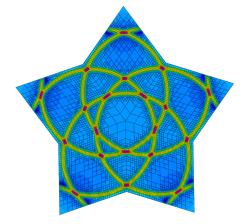

Hot strip mill slab modeling (U.S. Steel)

Heart modeling (Cardioid)

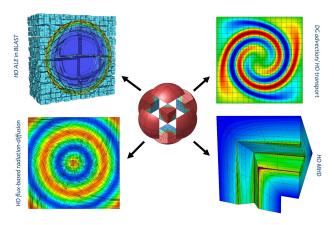
Core-edge tokamak EM wave propagation (SciDAC, RPI)

Adaptive MHD island coalescence (SciDAC, LANL)

Adaptive Mesh Refinement


MFEM's unstructured AMR infrastructure

AMR on library level


- Conforming local refinement on simplex meshes
- Non-conforming refinement for quad/hex meshes
- Initial hp-refinement

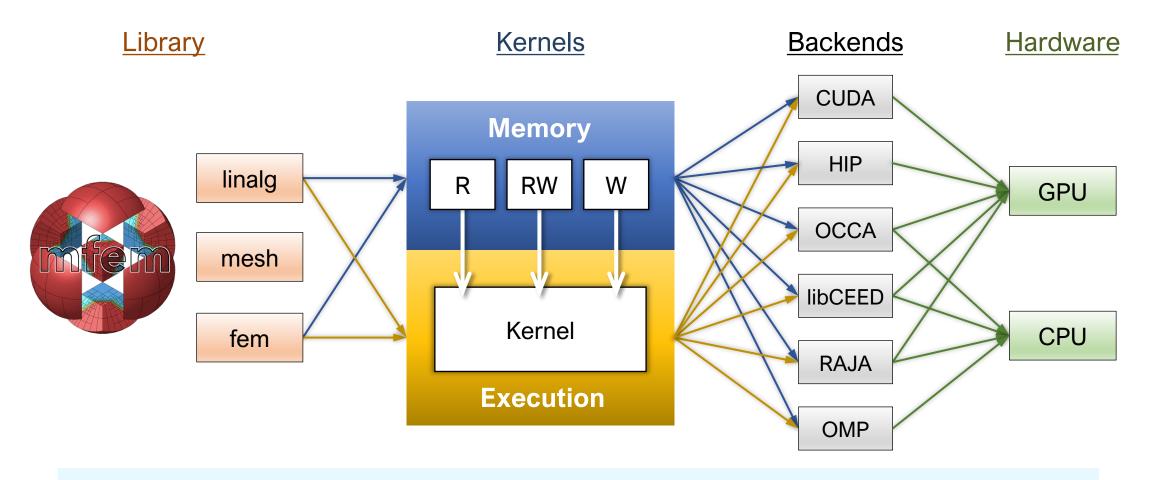
General approach


- Any high-order finite element space, H1, H(curl),
 H(div), on any high-order curved mesh
- 2D and 3D · hexes, prisms, tets
- Arbitrary order hanging nodes
- Anisotropic refinement
- Derefinement
- Serial and parallel, including parallel load balancing
- Independent of the physics
- Easy to incorporate in applications

Example 15

Same AMR algorithms can be applied to a variety of high-order physics

Shaper miniapp

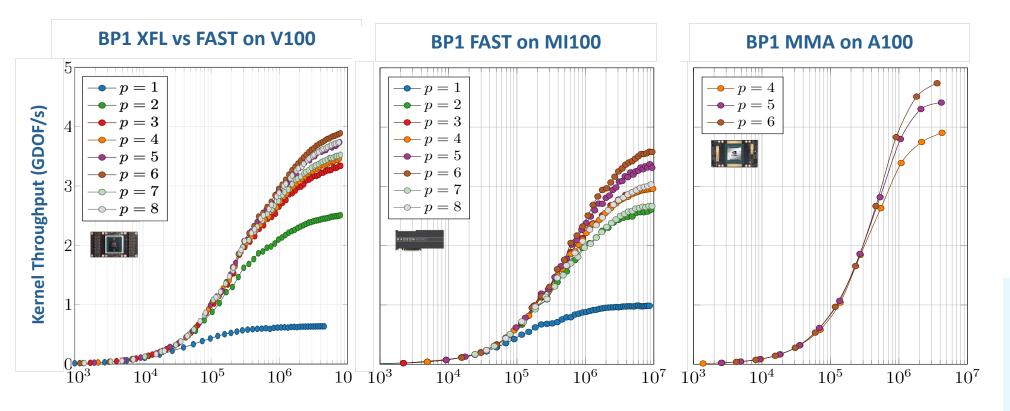


GPU Support

MFEM has provided GPU acceleration for over 3 years (since mfem-4.0)

Backends are runtime selectable, can be mixed

Coming soon: support for Intel/SYCL



GPU Support

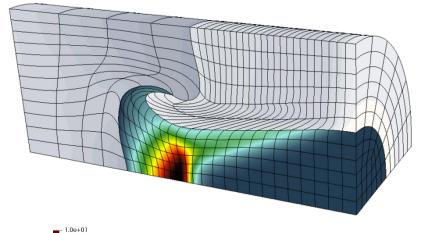
Recent GPU kernel improvements in MFEM

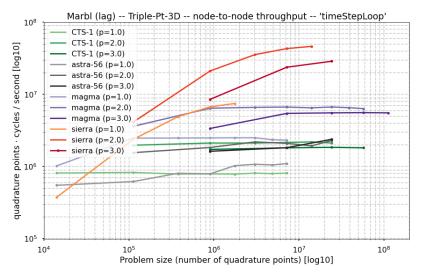
- New MFEM GPU kernels
- Have better strong scaling

- Perform on both NVIDIA + AMD GPUs
- Can utilize tensor cores on A100

- Benchmarks (BPs)
- Miniapps (Laghos)
- libCEED

ceed.exascaleproject.org





GPU Support

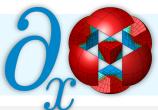
BLAST Performance on Sierra

3D throughput: CPU-based systems vs NVIDIA V100 (Sierra)

PA CPU/GPU

Phase	FA CPU	PA CPU	PA GPU	Speedup
Time Loop	3854.16	2866.54	221.03	12.9
Lagrange	1773.68	1098.42	69.73	15.7
Remesh	557.98	366.24	42.67	8.5
Remap	1513.99	1393.34	100.95	13.8

3D ALE: 36-core CPU vs 4 GPUs (3 nodes)


FEM Operator Decomposition + Partial Assembly

Decompose A into parallel, mesh, basis, and geometry/physics parts

$$A = P^T G^T B^T DBGP$$

- Partial assembly = store only D, evaluate B
- Optimal memory, near-optimal FLOPs compared to A
- AD-friendly
- MFEM + Enzyme

Roadmap for Next Year

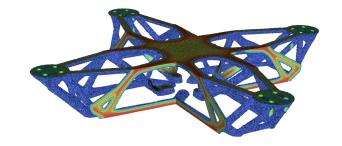
Plans for FY23

GPU support

- Performance on AMD GPU: Frontier + El Capitan
- GPU ports of additional integrators · Continued performance improvement

Application needs

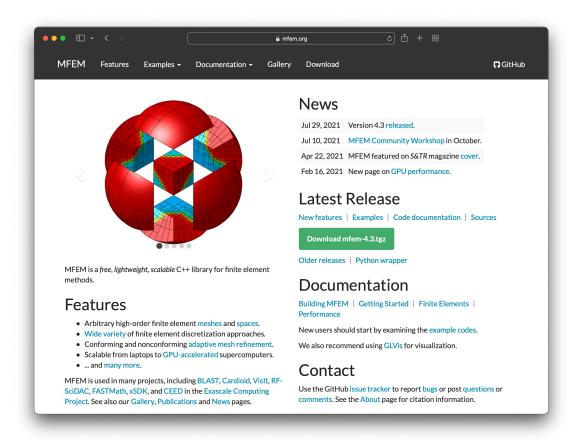
- Automatic differentiation · Design optimizations
- H(div) preconditioning · Contact problems + solvers · Parallel re-partitioning
- Cloud computing
- MFEM in industry · Long-term sustainability


Code quality

- Improve documentation
- Additional examples + miniapps

New releases

- v4.6 in May · v5.0 coming in FY24 expect breaking changes!
- What would you like to see?
 - Slack: #meet-the-team · GitHub: github.com/mfem/mfem/issues · Email: mfem@llnl.gov



MFEM Resources

Website:

mfem.org

Software:

github.com/mfem

Publications:

mfem.org/publications

Email:

mfem@llnl.gov

- Contact us with questions + feedback
- Contribute to the code
- Explore our publications

Thank you from the MFEM team at LLNL!

Bob Anderson @rw-anderson

Julian Andrej @jandrej

Nabil Atallah @atallah727

John
Camier

@camierjs

Jakub Cerveny @jakubcerveny

DylanCopeland

@dylan-copeland

Veselin Dobrev @v-dobrev

Yohann Dudouit @YohannDudouit

Aaron Fisher @acfisher

Milan Holec @homijan

Frank
Wang
@jwang125

Tzanio Kolev @tzanio

Boyan Lazarov @bslazarov

Ketan Mittal @kmittal2

Will Pazner Opazner

Socratis
Petrides

@psocratis

Mark Stowell

Vladimir Tomov @vladotomov

Chris
Vogl
@cjvogl

mfem.ors

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.