High-Order Solvers + GPU Acceleration

Will Pazner

pazner@pdx.edu

Joint with Tzanio Kolev, John Camier, and members of the MFEM team

MFEM Community Workshop October 25, 2022

High order methods...

- Promise higher accuracy per DOF than low-order
- Have demonstrated success modeling under-resolved physics such as turbulence (e.g. large eddy simulation)
- Symmetry preservation, curved geometries, adaptivity, problems with singularities
 - Better suited for modern architectures

High-order wave propagation in magnetic fusion device

High-order incompressible Taylor-Green vortex

More accurate resolution of enstrophy for equal # DOFs with high-order methods

Solving high-order finite element problems remains challenging!

Inverting the resulting linear operators is expensive:

- Extremely ill-conditioned
- Expensive to assemble
- High memory cost to store

Solving high-order finite element problems remains challenging!

Inverting the resulting linear operators is expensive:

- Extremely ill-conditioned
- Expensive to assemble
- High memory cost to store

We would like to construct linear solvers that:

- Converge quickly
- Have low memory requirements
- Are applicable to different types of physics
- Support end-to-end GPU acceleration
- Are available and easy to use in MFEM

Solving high-order finite element problems remains challenging!

Inverting the resulting linear operators is expensive:

- Extremely ill-conditioned
- Expensive to assemble
- High memory cost to store

We would like to construct linear solvers that:

- Converge quickly
- Have low memory requirements
- Are applicable to different types of physics
- Support end-to-end GPU acceleration
- Are available and easy to use in MFEM

Matrix-free solvers for high-order methods

Memory usage and comput. complexity: scaling with p		
Number of DOFs	$\mathcal{O}(p^d)$	p^3
Matrix-based methods		
Nonzeros in system matrix	$\mathcal{O}(p^{2d})$	p^6
Traditional (naïve) assembly	$\mathcal{O}(p^{3d})$ ops	p^9
Sum-factorized assembly	$\mathcal{O}(p^{2d+1})$ ops	p^7
" <i>Matrix-free</i> " methods		
Optimal memory usage	$\mathcal{O}(p^d)$	p^3
Sum-factorized operator application $\mathcal{O}(p^{d+1})$ ops		

Matrix-free solvers for high-order methods

Memory usage and comput. complexity: scaling with <i>p</i>			
Number of DOFs	$\mathcal{O}(p^d)$	p^3	
Matrix-based methods			
Nonzeros in system matrix	$\mathcal{O}(p^{2d})$	p^6	
Traditional (naïve) assembly	$\mathcal{O}(p^{3d})$ ops	p^9	
Sum-factorized assembly	$\mathcal{O}(p^{2d+1})$ ops	p^7	
" <i>Matrix-free</i> " methods			
Optimal memory usage	$\mathcal{O}(p^d)$	p^3	
Sum-factorized operator application $\mathcal{O}(p^{d+1})$ ops			

Goal: Iterative solvers with:

optimal $\mathcal{O}(p^d)$ memory $\mathcal{O}(p^{d+1})$ operations $\mathcal{O}(1)$ iterations

- \implies Cannot assemble the matrix
- \implies Must construct preconditioners without access to matrix entries

Low-order-refined preconditioning

- High-order operator A_p
 - Matrix-free operator evaluation
- Low-order-refined operator A_h
 - Gauss-Lobatto refined mesh
 - A_h is **sparse**: $\mathcal{O}(1)$ nonzeros per row
 - $B_h \sim A_h^{-1}$ uniform preconditioner
- Use B_h as a preconditioner for A_p
- LOR spectral equivalence ("FEM-SEM equivalence")

Theorem [Canuto, Quarteroni]

 A_p, A_h are H^1 discretizations of Poisson $\implies A_h$ is spectrally equivalent to A_p (constant independent of *h* and *p*).

Theorem [Dohrmann, Kolev, P.]

Spectral equivalence (independent of *h* and *p*) extends to curl-curl problems in H(curl), grad-div problems in H(div), and DG diffusion problems in L^2 using the "interpolation–histopolation" basis.

Solution Algorithm

Setup phase

- 1. High-order operator setup
- 2. Low-order-refined matrix assembly
- 3. AMG setup
- Solve phase
 - 1. High-order operator evaluation
 - 2. AMG V-cycle

Delegate the AMG setup and V-cycle to hypre

 LOR preconditioning ⇒ can use any matrix-based preconditioner applied to the LOR system to precondition the HO problem

High-order operator setup and application

Use MFEM's partial assembly approach

- Represent operator in *matrix-free* format
 - Nested product of linear operators
- Closely related to the CEED project and libCEED library

High-order operator setup and application

- Optimal $\mathcal{O}(p^d)$ memory requirements
- $\mathcal{O}(p^{d+1})$ computational complexity

High-order operator setup and application

- Optimal $\mathcal{O}(p^d)$ memory requirements
- $\mathcal{O}(p^{d+1})$ computational complexity

- Best performing kernels: MFEM's libCEED backend with cuda-gen kernel fusion/code generation
- Typical behavior of high-order methods on GPU:
 - Higher-order \implies **faster** performance

Low-order-refined matrix assembly

Until now, this was a major bottleneck in LOR preconditioning

- Creation and "bookkeeping" for the low-order refined mesh induced significant overhead
- Actual matrix assembly either on host (AssemblyLevel::LEGACY)
- Or more recently on device (AssemblyLevel::FULL)

Low-order-refined matrix assembly on GPU

Macro-element batching strategy

- Perform all work at the level of macro-elements
- Avoid generating LOR mesh
- Reuse all data structures and connectivity from high-order (coarse) mesh
- Make use of local Cartesian structure
- One block of threads per macro-element
- Thread over LOR "subelements"
- Assembly macro-elements into local sparse matrices with fixed sparsity
- Assemble into global (parallel) CSR format for use with AMG

LOR assembly throughput

Before

After

Including only assembly kernels (no pre-processing)

LOR assembly throughput

Before

After

Including full assembly procedure (with pre-processing)

LOR assembly throughput

Before

After

Macro-element strategy: higher order \implies faster performance (In constrast to "legacy" assembly algorithm)

CPU and GPU comparisons

Nédélec and Raviart-Thomas elements

Nédélec

Raviart-Thomas

- To solve curl-curl (electromagnetic diff.) and grad-div (radiation diff.) problems, use hypre's AMS and ADS auxiliary space preconditioners
- In addition to the system matrix, these solvers require:
 - vertex coordinates, discrete gradient matrix, discrete curl matrix

Parallel scalability

Good strong and weak scalability (shown here up to 1024 GPUs)

LOR AMR preconditioning

New LOR preconditioning method based on variational restriction

Results: AMR

р	DOFs	NNZ	NNZ per row	lts.	GPU Runtime (s)
1	$6.0 imes10^4$	$1.7 imes10^{6}$	28	28	0.4
2	$6.1 imes10^5$	$2.2 imes10^7$	36	43	0.7
3	$2.2 imes10^{6}$	$8.8 imes10^7$	40	42	1.1
4	$5.5 imes10^{6}$	$2.3 imes10^8$	42	44	2.0
5	1.1×10^{7}	$5.0 imes10^8$	45	45	3.3
6	$1.9 imes 10^{7}$	$9.2 imes10^8$	48	46	5.7
7	$3.1 imes 10^{7}$	$1.6 imes10^9$	52	47	9.9

Electromagnetic diffusion

- Solve for magnetic field induced by electric current running through a coil
- Use $A-\phi$ formulation of magnetic diffusion
- Drive current by potential difference at two terminals
- Piecewise constant conductivity coefficient in two materials (copper and air)

- Solve for electric scalar potential ϕ LOR + AMG
- Compute electric field with discrete gradient
- Solve for magnetic vector potential A LOR + AMS in H(curl)
- Compute magnetic field B in H(div) with discrete curl
- ▶ 1.5×10^6 hexahedral elements mesh
- 2.9×10^8 Nédélec DOFs with p = 4
- ▶ 45 CG iterations in *H*¹, 22 CG iterations in *H*(curl)
- Wall clock runtime on 320 V100 GPUs 26 seconds

How can I use this?

- All of these methods are available and easy to use in MFEM
- GPU acceleration and macro-element batching are automatically enabled if applicable
- Creating LOR solvers is one line of code

// For any SolverType (AMG, direct solver, etc.), form the
// corresponding LOR preconditioner
LORSolver<SolverType> lor_solver(a, ess_dofs);

// For example: // if 'a' is H1 diffusion... LORSolver <HypreBoomerAMG> lor_amg(a, ess_dofs); // if 'a' is ND curl-curl... LORSolver <HypreAMS> lor_ams(a, ess_dofs); // if 'a' is RT div-div... LORSolver <HypreADS> lor_ads(a, ess_dofs);

Demo

 These methods are illustrated in the LOR solvers miniapp (included with MFEM)

Demo

 These methods are illustrated in the LOR solvers miniapp (included with MFEM)

Conclusions

- Matrix-free high-order solvers on the GPU
- MFEM supports end-to-end GPU acceleration of LOR preconditioners
- Preconditioners for all of the de Rham complex
 - H¹, H(curl), H(div) problems
- Convergence independent of mesh size and polynomial degree h
- Easy to use API: usually just one line of code
- Illustrated in bundled solvers miniapp
- -----
- Pazner, Kolev, Dohrmann. Low-order preconditioning for the high-order de Rham complex (2022).
- Pazner, Kolev, Camier. End-to-end GPU acceleration of low-order-refined preconditioning for high-order finite element discretizations (2022).