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High order methods. . .

▶ Promise higher accuracy per DOF than
low-order

▶ Have demonstrated success modeling
under-resolved physics such as turbulence
(e.g. large eddy simulation)

▶ Symmetry preservation, curved
geometries, adaptivity, problems with
singularities

▶ Better suited for modern architectures

High-order wave
propagation in

magnetic fusion device

High-order incompressible
Taylor-Green vortex
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More accurate resolution of enstrophy for equal
# DOFs with high-order methods
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Solving high-order finite element problems remains challenging!

Inverting the resulting linear operators is expensive:
▶ Extremely ill-conditioned
▶ Expensive to assemble
▶ High memory cost to store

We would like to construct linear solvers that:
▶ Converge quickly
▶ Have low memory requirements
▶ Are applicable to different types of physics
▶ Support end-to-end GPU acceleration
▶ Are available and easy to use in MFEM
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Matrix-free solvers for high-order methods

Memory usage and comput. complexity: scaling with p 3D

Number of DOFs O(pd) p3

Matrix-based methods

Nonzeros in system matrix O(p2d) p6

Traditional (naı̈ve) assembly O(p3d) ops p9

Sum-factorized assembly O(p2d+1) ops p7

“Matrix-free” methods

Optimal memory usage O(pd) p3

Sum-factorized operator application O(pd+1) ops p4

Goal: Iterative solvers with:

optimal O(pd) memory O(pd+1) operations O(1) iterations

=⇒ Cannot assemble the matrix
=⇒ Must construct preconditioners without access to matrix entries
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Low-order-refined preconditioning

▶ High-order operator Ap

• Matrix-free operator evaluation
▶ Low-order-refined operator Ah

• Gauss–Lobatto refined mesh
• Ah is sparse: O(1) nonzeros per row
• Bh ∼ A−1

h uniform preconditioner

▶ Use Bh as a preconditioner for Ap

▶ LOR spectral equivalence (“FEM–SEM
equivalence”)

Ap

Ah

Theorem [Canuto, Quarteroni]

Ap,Ah are H1 discretizations of Poisson =⇒ Ah is spectrally
equivalent to Ap (constant independent of h and p).
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H1

“nodes”
∇

Kinematics

H(curl)
“edges”

∇×

MHD

H(div)
“faces”

∇·

Rad. diffusion

L2

“elements”

Rad. transfer

Theorem [Dohrmann, Kolev, P.]

Spectral equivalence (independent of h and p) extends to curl-curl
problems in H(curl), grad-div problems in H(div), and DG diffusion
problems in L2 using the “interpolation–histopolation” basis.

Poisson
−∇ · ∇u = f
Lagrange H1

Maxwell
u+∇×∇× u = f

Nédélec H(curl)

Grad-div
u−∇(∇ · u) = f

Raviart–Thomas H(div)
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Solution Algorithm

▶ Setup phase
1. High-order operator setup
2. Low-order-refined matrix assembly
3. AMG setup

▶ Solve phase
1. High-order operator evaluation
2. AMG V-cycle

▶ Delegate the AMG setup and V-cycle to hypre

▶ LOR preconditioning =⇒ can use any matrix-based
preconditioner applied to the LOR system to precondition the
HO problem
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High-order operator setup and application

▶ Use MFEM’s partial assembly approach

P

PT

T-vector

Global true dofs

G

GT

L-vector

Local subdomain dofs

B

BT

E-vector

Element dofs

D

Q-vector

Quadrature point values

Ap = P TGTBTDBGP

▶ Represent operator in matrix-free
format

• Nested product of linear operators

▶ Closely related to the CEED project
and libCEED library
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High-order operator setup and application

▶ Optimal O(pd) memory requirements
▶ O(pd+1) computational complexity
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Peak: 7.1 × 108 DOF/s
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High-Order Operator Application

p = 1
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Peak: 1.6 × 109 DOF/s

▶ Best performing kernels: MFEM’s libCEED backend with
cuda-gen kernel fusion/code generation

▶ Typical behavior of high-order methods on GPU:
• Higher-order =⇒ faster performance
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High-Order Operator Application (libCEED)
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▶ Best performing kernels: MFEM’s libCEED backend with
cuda-gen kernel fusion/code generation

▶ Typical behavior of high-order methods on GPU:
• Higher-order =⇒ faster performance
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Low-order-refined matrix assembly

Until now, this was a major bottleneck in LOR preconditioning

▶ Creation and “bookkeeping” for the low-order refined mesh
induced significant overhead

▶ Actual matrix assembly either on host
(AssemblyLevel::LEGACY)

▶ Or more recently on device (AssemblyLevel::FULL)

→
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Low-order-refined matrix assembly on GPU

Macro-element batching strategy

▶ Perform all work at the level of macro-elements
▶ Avoid generating LOR mesh
▶ Reuse all data structures and connectivity from high-order

(coarse) mesh
▶ Make use of local Cartesian structure

▶ One block of threads per
macro-element

▶ Thread over LOR “subelements”
▶ Assembly macro-elements into local

sparse matrices with fixed sparsity
▶ Assemble into global (parallel) CSR

format for use with AMG
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LOR assembly throughput

Before After
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LOR assembly throughput

Before After
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Peak: 9.5 × 106 DOF/s
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Peak: 2.1 × 107 DOF/s

Macro-element strategy: higher order =⇒ faster performance
(In constrast to “legacy” assembly algorithm)
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CPU and GPU comparisons

CPU: 1.9 s

19.0 s

19.6 s

102.5 s

40.7 s

AMG Setup

LOR Assembly

HO Setup
Setup

HO Application

AMG V-cycle
Solve

(Total over all CG iterations)

Total: 181 s

3D Case, CPU

GPU:
253ms

478ms

2533ms

1048ms

228ms

AMG Setup

LOR Assembly

HO Setup
Setup

HO Application

AMG V-cycle
Solve

(Total over all CG iterations)

Total: 4540ms

3D Case, GPU
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Nédélec and Raviart–Thomas elements

Nédélec Raviart–Thomas
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▶ To solve curl-curl (electromagnetic diff.) and grad-div (radiation diff.)
problems, use hypre’s AMS and ADS auxiliary space preconditioners

▶ In addition to the system matrix, these solvers require:
• vertex coordinates, discrete gradient matrix, discrete curl matrix
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Parallel scalability

▶ Good strong and weak scalability (shown here up to 1024 GPUs)
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LOR AMR preconditioning

▶ New LOR preconditioning method based on variational restriction

Ap = ΛT
p ÂpΛp, Ah = ΛT

p ÂhΛp

Ah ∼ Ap independent of p
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Results: AMR

p DOFs NNZ NNZ per row Its. GPU Runtime (s)

1 6.0 × 104 1.7 × 106 28 28 0.4
2 6.1 × 105 2.2 × 107 36 43 0.7
3 2.2 × 106 8.8 × 107 40 42 1.1
4 5.5 × 106 2.3 × 108 42 44 2.0
5 1.1 × 107 5.0 × 108 45 45 3.3
6 1.9 × 107 9.2 × 108 48 46 5.7
7 3.1 × 107 1.6 × 109 52 47 9.9
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Electromagnetic diffusion

▶ Solve for magnetic field induced by electric current running
through a coil

▶ Use A–ϕ formulation of magnetic diffusion
▶ Drive current by potential difference at two terminals
▶ Piecewise constant conductivity coefficient in two materials

(copper and air)
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▶ Solve for electric scalar potential ϕ — LOR + AMG
▶ Compute electric field with discrete gradient
▶ Solve for magnetic vector potential A — LOR + AMS in H(curl)
▶ Compute magnetic field B in H(div) with discrete curl
▶ 1.5 × 106 hexahedral elements mesh
▶ 2.9 × 108 Nédélec DOFs with p = 4
▶ 45 CG iterations in H1, 22 CG iterations in H(curl)
▶ Wall clock runtime on 320 V100 GPUs 26 seconds
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How can I use this?

▶ All of these methods are available and easy to use in MFEM
▶ GPU acceleration and macro-element batching are

automatically enabled if applicable
▶ Creating LOR solvers is one line of code

// For any SolverType (AMG, direct solver, etc.), form the

// corresponding LOR preconditioner

LORSolver <SolverType > lor_solver(a, ess_dofs);

// For example:

// if ’a’ is H1 diffusion...

LORSolver <HypreBoomerAMG > lor_amg(a, ess_dofs);

// if ’a’ is ND curl-curl...

LORSolver <HypreAMS > lor_ams(a, ess_dofs);

// if ’a’ is RT div-div...

LORSolver <HypreADS > lor_ads(a, ess_dofs);
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Demo

▶ These methods are illustrated in the LOR solvers miniapp
(included with MFEM)
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Conclusions

▶ Matrix-free high-order solvers on the GPU
▶ MFEM supports end-to-end GPU acceleration of LOR

preconditioners
▶ Preconditioners for all of the de Rham complex

• H1, H(curl), H(div) problems

▶ Convergence independent of mesh size and polynomial degree h
▶ Easy to use API: usually just one line of code
▶ Illustrated in bundled solvers miniapp

Pazner, Kolev, Dohrmann. Low-order preconditioning for the
high-order de Rham complex (2022).

Pazner, Kolev, Camier. End-to-end GPU acceleration of
low-order-refined preconditioning for high-order finite element
discretizations (2022).
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